-u««..E

AR

A
e

y

[

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A200 441

THESIS

THREE-DIMENSIONAL PERSPECTIVE IMAGE
GENERATION FROM SONAR BATHYMETRY
AND IMAGERY DATA

by

Robert J. Myers

June 1988

Thesis Advisor: Chin-Hwa Lee

Approved for public release; distribution is unlimited

DTIC

FELECTE
i, NOV 1 71908 §
v .

Z/E
t TP
§§ E; ‘1 1’ Lo

087

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY C.ASSIF.CAT.ON 'p RESTR.CT.VE MARKINGS
UNCLASSIFIED
2. SECURITY CLASSIF CATION AUTHOR.TY 3 DISTRIBUTION AVAILABILITY OF REPORT
ECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release;
2b. DECLASSI 100 ING SCHEDULE distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NuUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
63. NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL [7a NAME OF MONITORING ORGANIZATION
(If applicable)
Naval Postgraduate School 62 Naval Postgraduate School
6¢c. ADDRESS (City, State, and 2P Code) 7b. ADDRESS (City, State, and 2IP Code)
Monterey, California 93943-5000 Monterey, California 93943-5000
8a. NAME OF FUNDING . SPONSORING 8o OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicabie)
8. ADDRESS (City, State, and ZiP Code) 10 SOURCE OF FUNDNG NUNBE?S
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

1. TILE (include Security Classificaion) myppp DIMENSIONAL PERSPECTIVE IMAGE GENERATION FROM
SONAR BATHYMETRY AND IMAGERY DATA

12. PERSONAL AUTHOR(S}
Robert J. Myers

13a. TYPE OF REPORT *3b TIME COVERED 14 DATE Or REFORT (Year, Month, Dayi ({15 PAGE COUNT
Master's Thesis FROM TO 1988 .Tune 109

16. SUPPLEMENTARY NOTATIONThe views expressed in this thesis are those of the author
and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17 COSAT!I CODES 18 SuBJECT TERMS (Continue on reverse f necessary and identify by block number)
FIELD GROUP SUB-GROUP 3-D Image Generation, Sonar Images,

Perspective Views

9. ABSTRACT (Continue on reverse if necessary and identify by block number) Thi§ thesis develops a pgogram which will
merge or overlay imagery and terrain elevation data and create a synthetic 3-D perspective

view of the ocean bottom. The observer may position himself at various locations and see
the terrain from different viewpoints. The elevation data is grouped into triangular panels
and the color information is averaged from the imagery data file. The entire panel is
assigned a single color equal to the average. These panels are then projected onto an image
plane by using a 3D to 2D perspective transformation. Hidden surfaces are removed by a
"painters” algorithm which relies on sorting the panels based on distance from the observer.

20 ODISTRIBUTION - AVAILABILITY OF ABSTRACT 2* ABSTRACT SECURITY CLASSIFICATION
(B uncrassIFiEDuNLIMITED [T SAME AS goT [o71C USERS UNCLASSIFIED
22a NAME OF RESPNNSIRIE N a0 e TELEFHUNT UNC/wde Ares :QdC)T.?.:L wrrce 3. .vB0OL
{ Lnin-Hwa Lee (408) 646-2056 G2Le
DD FORM 1473, 8a mar 83 APR ed 1.0" Mmay pe used untl exhaustec .

SECURITY CLASSIFICATION OF "H:5 PAGE

@ US Government Printing Ottice 1986—606-24)

i UNCLASSIFIED

All atrer ed:tions are obsolete

‘g------I--I---.-l----l--------------—-—J

Approved for public release; distribution is unlimited.

Three-Dimensional Perspective Image Generation
from Sonar Bathymetry and Imagery Data

by

Robert J. Myers
Lieutenant, United States Navy
B.S., United States Naval Academy, 1978

Submitied in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: ‘/)T%;i6£7L C;2 J7/25%§24k2

Robert J. Myers

V. rm AT
Approved by: Ci/(f?/ Fr'K

Chin-Hwa Lee, Thesis Advijsor

A

Charles W. Therrien, Second Reader

N2 P P

P. Powers, Chairman, Department of
Electrical and Computer Engineering

Gordon E. Schacher, Dean of
Science and Engineering

ii

ABSTRACT

This thesis develops a program which will merge or
overlay imagery and terrain elevation data and create a
synthetic 3-D perspective view of the ocean bottom. The
observer may position himself at various locations and see
the terrain from different viewpoints. The elevation data
is grouped into triangular panels and the color
information is averaged from the imagery data file. The
entire panel is assigned a single color equal to the
average. These panels are then projected onto an image
plane by wusing a 3D to 2D perspective transformation.
Hidden surfaces are removed by a B "painters" algorithm
which relies on sorting the panels based on distance from

the observer.

Accession For

{ NTIS GRAXI
DTIC TAB

Unannounced 8}
Justification ____ _____}

By
Dis;ribution[
Avatrigtility Codes
Aveil and/or
Special

!
%Dist

A

TABLE OF CONTENTS

I. INTRODUCTION. e cveoeesnevrosossencoanaansssnsansne ees 1
II. IMAGE FORMATION USING TRANSFORMATION GEOMETRY... 7
A. COORDINATE SYSTEMS....... tsssesacsetnacs cesee 9

B. 3-D PERSPECTIVE TRANSFORMATION.....c.ccicc0.. .10

III. DATA FILE FORMAT FOR DIFFERENT SENSOR IMAGES....14
A. BATHYMETRIC DATA.....c.cveeecessescsnccnsonsss 14

B. IMAGERY DATA............ ceterssnnas vetteetenn 15

Iv. ALGORITHMS FOR COMBINED 3-D PERSPECTIVE DISPLAY.21

A. POLYGON FORMATION AND SHADING...... -
B. IMAGE PLANE FORMATION,PERSPECTIVE

VIEW CALCULATION....... cerees s s eeceeonn oo .26
C. TRANSFORM TO THE IMAGE PLANE.......cccvesvene 31

D. AFFINE IMAGE PLANE TO SCREEN TRANSFORM....,...35

E. HIDDEN SURFACE REMOVAL.....cctteeececconcsess38

F. RESULTS.............. teeseecsetecccecoansenan 43
\Y OPERATIONAL ASPECTS OF THE PROGRAM...........0.. 48
A. ALTER MAGNIFICATION OR FIELD OF VIEW........ .49

B. CHANGING THE ELEVATION SCALING......:0.:00...51

C. ENTER A NEW OBSERVER LOCATION.....co0ecee. eee52
D. SAVING AN TIMAGE. . .:ceceoecccoceoscosssccnsans 52
VI. CONCLUSIONS . it eeetetesecosenosasocssacosssnsssens 53

A CENERAD-: « e v unnssennneesennesesnasesnsnssenssdB3 1

B. LIMITATIONS....ctceeeensecnsosnsssessnsssnesssdd

iv

@

C. PERFORMANCE . ..ot vtereeescneosccsccnsaccsanncas 54
D. FUTURE WORK.........c.c.... Sessenctecnsenreasen 57
APPENDIX A PROGRAM SUMMARY...c.veeevscas ceecesvveeneas 59

APPENDIX B PROGRAM LISTING.....ccoceevccccacasss

LIST OF REFERENCES....c.ccva.

R N ¢ 10

INITIAL DISTRIBUTION LIST...

..........o...............lOl

I. INTRODUCTION

The goal of this thesis is to develop the software
required to display a 3-D perspective view of combined
sonar imagery and bathymetric data. The result is a
synthesized image representing a 3~D perspective view of
the terrain from a given observer location.

The issues involved include: first, how can the sonar
imagery data and the bathymetric data be combined; second,
what is the methodology of creating the 3-D perspective
view from all observer locations: third, how fast can each
view be generated using real data and fourth, how is the
picture quality affected by the resolution of the data.

Conventional methods of displaying elevation data are
with contour 1lines or 3-D grid line drawings. Some
applications merge the contour lines with color data and
this aids in the overall comprehension of the data.
Recently the speed of the digital computer has been called
upon to generate 3-D views based on elevation with
shading. The shading value may be based on the elevation,
or may be based on other information available. These
displays are an improvement over the simple contour plots,

as well as the 3-D grid line drawings. The advantage of

|

L

any 3-D perspective display method is the akility to
"see" the terrain in a fashion which appears normal to
the observer.

Applications of this method range from low cost flight
simulators for manned or unmanned vehicles to real time
displays of multiple source information in a fashion which
results in a greater 1level of comprehension or
interpretation. For example, a combat aircraft pilot must
be able to assimilate vast amounts of data. The piiot must
search multiple electronic displays in order to put
together a picture of the environment in his mind. The
pilot must answer several questions simultaneously: Where
am I?, Where are my friends?, Where is the enemy?, What
is the condition of my aircraft? Simplifying the
presentation of this information in a simulated
perspective view of the surrounding environment will
improve the response of the pilot.[Ref. 1, p. 64] The
ability to combine the various data types into a combined
display is a form of "sensor fusion". In the aircraft
example the data may be video from external video cameras
and radar or infrared sensor returns.

Generally, sensor fusion refers to the ability to
merge layers of information from various sources into a
new form. The data may be imagery data from Landsat or
aircraft, or any other layer of data within the same

geographical area such as magnetic anomaly or infrared

B Nl

response data. These various types of data must be in a
form which can be represented by a specific color or gray
. shade. Adding color or shading from the other data source

allows the correlation between it and the terrain

elevation data to become apparent. A specific area of
interest includes shipboard systems where numerous sensors
are gathering data and the operator selectively views the
output from a single sensor or a combination of sensors.
If the outputs from multiple sensors are combined into a
3-D perspective view of the surrounding environment, the
response time of the operator will improve. By utilizing
the 3-D techniques, a view forward of the ship could be
displayed on a CRT screen. Combining radar elevation data
with an image file database would permit the formation of
a 3-D perspective view of the radar image. This same
technique used with the sonar data obtained by the ship's
sonar systems and imagery data files of the harbor channel
would allow a realistic view of the channel and permit
more efficient usage of the available sonar systems.

The software developed in this thesis overlay side-
looking sonar imagery data of the ocean bottom onto the
bathymetric data of the same geographic area. This is an
extension of work by L. Coleman [Ref. 2]. Coleman's work
concentrated in generating a 3-D perspective view of land
terrain. Several items added in this work include the

ability to approach the area from any heading (observer

> pd

locations within the area boundaries are permitted),
reduction of the time to create one image, and drawing of
the image is included in the main routine. In addition to
the work by Coleman, a separate project by McGhee, 2yda,
Smith and Streyle incorporates many of the same techniques
[Ref. 3]. The imagery data is in the form of a 512 x 512
pixel image with 256 possible gray levels. The bathymetric
data is gridded and consists of depth values on a latitude
longitude grid. The bathymetric data, called the elevation
data, is segmented into triangular panels. The boundaries
of each panel overlay the image data, image pixels inside
the panel are averaged and this average gray level is
assigned to the entire panel. To generate the perspactive
view, each elevation point is projected onto an image
plane located at the observer location, and oriented with
respect to the observer course. This projection is
accomplished through a 3D-2D perspective projection
transformation which maps the elevation point coordinates
to image plane coordinates. The synthesized image is
generated on a monitor and approximates the view from the
observer position with a 38.6 degree field of view. The
synthesized view is directly affected by the resolution of
the input data. The elevation file resolution affects both
the elevation drawing and the shading of the image.
Shading is affected due to the averaging of pixel shades

within each triangle. The drawing is affected by the low

sampling rate of the terrain; only the larger features
will be present in the displayed image.

The software is implemented in FORTRAN on a DEC Micro-
Vax GPX II. This system is capable of 1024 x 864 pixel
resolution, with 256 colors or 256 gray levels. A graphics
software package from DEC, MicroVvMS Workstation Graphics
Software version 3.0, is used to draw and fill each panel
on the monitor. The software may be run on other systems,
with changes required in the screen plotting routines and
the number of shades or color selection. Also the size of
the input data files may be limited on other systems which
do not have sufficient memory to store the input data in
arrays. Results of this work show that the performance is
limited Lty the plotting speed of the Micro-vVax. The
calculation of the perspective image is approximately 11%
of the total time required to complete the process. The
remainder of time is used to draw the image on the screen.

Using this software, an observer may select a position
and heading and "see" the ocean bottom terrain in a 3-D
perspective form. The observer heading is not limited, the
position may be within the boundaries of the area
selected, and the view is generated directly on the
screen. Several options are available including a
magnification factor, elevation scale exaggeration, saving
the image to disk and the ability to respecify a new

observer location. The speed of 1image generation is

F .
r
v
)

directly affected by the resolution or size of the input

h data files, using 61 x 61 elevation points, an image is
generated in 40 seconds.

Chapter Two will cover the basic image geometry in

h order to develop the perspective projection transformation

equation, and the orientation of the image plane. Chapter

Three details the data file formats, resolution and how

they are prepared for use in the main routine. Chapter
Four covers the implementation of the algorithms in the
program and any alternatives which were investigated.
Chapter Five details program operation and Chapter Six
presents conclusions and several recommendations for

improvement or further study.

|

IT. IMAGE FORMATION USING TRANSFORMATION GEOMETRY

Inherent in this project is the ability to take the
two dimensional gridded elevation data which represents a
three dimensional object and display a perspective view on
a two dimensional monitor. Two basic approaches, namely,
parallel or perspective projection can accomplish this.

A parallel projection is one where the points of the
object are projected onto the image plane by parallel
lines, that is the projection lines do not converge. This
method has the advantage of maintaining relative
dimensions of the object and is useful for obtaining
measurements [Ref. 3, p. 52].

In the perspective projection all points are projected
onto the image plane through a reference point which will
be called the focal point ([Ref. 4, p. 133]. In this
method, the relative dimensions of the object are not
preserved, but the image appears more realistic. Figure
2-1 1illustrates the two methods. Because the goal is
feature recogniﬁion and interpretation through screen
display and not precise measurement, the perspective

projection is used.

|

Center

of ———————

Projection

Parallel Projection Perspective Projection

Projection

Pi
Perspective -~

Projection

Projection

Clomser lineas appear larger than more distant
lines of equal length.

Figure 2-1 Parallel and Perspective Projections
[Ref. 3, p. 54)

The perspective projection may be generalized as a
reference 3-D to 2-D transformation and is illustrated in

matrix notation:
A=[M]B (2.1)

where: K—represents a vector in the image 3D

coordinate system

B-represents a vector in the object 3D

coordinate system

g—represents the transformation matrix

A. COORDINATE SYSTEMS

Equation 2.1 refers to the image 3-D coordinate system
and the object 3-D coordinate system. The object is
located in a right-handed 3-D cartesian coordinate system
where each object point is described in terms of (X,Y,2)
geo-rectangular coordinates. The center of the earth is
located at (0,0,0), the X-axis points to the intersection
of 0 degrees latitude and 0 degrees longitude, the Y-
axis points to the intersection of 0 degrees latitude and
90 degrees east 1longitude and the Z-axis points to true
north. Figure 2-2 illustrates this coordinate system.
There is a direct relationship between the 1latitude,
longitude, height with respect to sea 1level and the
(X,Y¥,2) object coordinates. The input data is supplied on

a latitude, longitude grid and is converted to (X,Y,2Z)

4
0» 0o: GOV 0: 00: DOE
D: 00, OON
- L \ Y
L/
X

Figure 2-2 Object Coordinate System

coordinates for use in the transformation equations. The
image coordinate system 1is also a right~handed 3-D
cartesian system. The focal point 1is 1located at
(x0,y0,F). Figure 2-3 illustrates the image coordinate

system.

B. 3-D PERSPECTIVE TRANSFORMATION

The elements of the [M] matrix in equation 2.1 are the
cosines of the spatial angles that each of the image
system axis x,y,z make with each of the object system axis
X,Y,Z. This substitution results in the following specific

form for the matrix [M]. [Ref. 4, p. 139]

10

A

I

Y

IMAGE PLANE

\
\ X
\\

Z
FOCAL POINT
Figure 2-3 Image Coordinate System
cosxX cosxY cosx2 Mi11 Mi2 Mi3
M = cosyX cosyY cosy2 = Moy Mao Majg (2.2)

coszX coszY cosz?Z My M3p M3

By convention the [M] matrix transforms from the
object system to the image system [Ref. 4, p. 139). Using
this matrix, every object point may be converted from the
3-D XYZ coordinates to the xyz image coordinates.

At this point the relation for a single object point
is developed. Once defined, the relation may then be
applied to all the vectors from the object to the focal
point. Figure 2-4 illustrates the object and image space

coordinate systems. Define the vector <FA> as a vector

11

OBJECT SPACE

IMAGE PLANE

B
()%. YB' ZB)

/A

Figure 2-4 Object and Image Space Systems

from the focal point (F) to a point on the image plane (A)
and the vector <FB> as a vector from the focal point (F)
to an object point (B). Note that the image vector <FA>

is collinear with the object vector <FB>. [Ref. 4, p.

141]
FA = k FB
where: FA - image vector
FB - object vector (2.3)
k - constant of proportionality

Lg
@
-

12
‘f
@

Using the image space coordinates (x,y,z) to describe <FA>
and object space coordinates (X,Y,2Z) to describe <FB>

gives:

r
— [xa-xg | — Xg -~ Xp |
2g - Zf
Then using equation 2.1 to express <FA> in the xyz image
system yields:
FA = k [M] FB (2.5)

or after substitution:
r Xp - Xxg r Xg - Xp
ya - ¥g | =k [¥] l Yg - Yp J (2.6)
-£ L% - 2F
Equation 2.6 is a form of the collinearity equation, it
forms the basic relationship that the focal point, the
image point and the object point are in a straight 1line.
The values of x0 and y0 allow for the observer to be
slightly misaligned with the image plane z-axis and
generally are set equal to zero. This is the fundamental
relationship wused in this project to create the
perspective views on the monitor screen. [Ref. 4, p. 141]
This transformation will be <called upon after the
elevation points have been grouped into triangles and the
observer 1location has been entered. Each elevation point
in front of the observer will be transformed to image

plane coordinates for subsequent drawing on the 2-D

screen.

13

-

I ..

III. DATA FILFE FORMAT FOR DIFFERENT SENSOR IMAGES

Input to the routines consist of two data files, the
bathymetric data and the image data. Each of these is

described below,

A. BATHYMETRIC DATA

The bathymetric data was obtained from the Defense
Mapping Agency/National Geophysical Data Center. The
complete data base should be referenced as "Digital
Bathymetric Data Base-Unclassified" or (DBDBU). The area
which was used here extends from 50 degrees north
latitude, 140 west longitude to 32 degrees north, 120 west
on a 5 minute by 5 minute grid. Each value describes the
depth in meters below sea level at a given coordinate
location. Values which lie above sea level are assigned
=10 to avoid ambiguity.

Extracting the area of interest is performed by a
utility program, CROPELEV.FOR. The user enters the
latitude and longitude of the southwest corner of the area
of interest and the number of rows and columns desired.

Each row and column is 5 minutes of latitude and longitude

respectively.

14

After the area of interest is selected, the data is
extracted from the original file and placed in row-
column format where the rows correspond to latitude and
the columns represent the longitude. Row numbers increase
from south to north and column numbers increase from west
to east. The first record of the file is a header
containing the latitude and longitude (deg, min, sec) of
the southwest corner, the 1latitude and 1longitude
resolution in seconds and the number of rows and columns
of data. Figure 3-1 illustrates this file format. This
file is stored on disk and 1loaded into the variable

RELEV(*,*) at runtinme.

B. IMAGERY DATA

The sonar imagery data was obtained from the U.S.
Geological Survey, Department of the Interior "Atlas of
the Exclusive Economic Zone, Western Conterminous United
States", [Ref. 5]. This atlas consists of 36 two degree
mosaic images at a scale of 1:500,000. Coverage extends
from 49 degrees north, 130 west to 30 degrees north, 117
west. These images were obtained using a unique side-scan
sonar system called GLORIA (Geological Long-Range Inclined
Asdic). ([Ref. 5, p. 2] This sonar system allows mapping
of large areas of ocean bottom on a single pass of the
ship. Figure 3-2 1lists several characteristics of the

GLORIA system.

15

A

“EC 410 T T N T T
32:40 n
-+ 4+ 4+ + + + + F
- + + + + + + +
4 + + + + + + + F
- + + + + + + +
-4 + + + + + + + F
Rew 4 4+ 4+ 4+ + + + +
e~ 4+ + + 4+ + A+ +
:;E.:Elo”: 139, 40V] 1] —l l ' I 139:00 ¥
REC #1 LATD, LATM, LATS, LOND, LONM, LONS, D_LAT, D_LON, #COLS, #RO¥S
Figure 3-1 Bathymetric Data File Format

16

Gloria Side Scan Sonar Specifications
Size ... vevsiettisneceses 7.75 X .66 meters

Weightcc0c0veee.. 2 tons

Scancc00c00020ss0... 30 km/side = 60 km
swathwidth at 10 kts.

Powerccc0veeeeee. 10 kw/side

Beamwidth 2.5 deg azimuth

10 deg vertical

Resolution 30 X 218 meters/pixel
at 5000 meters depth

FrequUencCysesses... 6.5 kHz

Figure 3-2 Some Characteristics of the
Gloria II Side-Scan Sonar
[Ref. 6, p. 7]

Each mosaic image is a half-tone black and white
print of the acoustic reflectance of the sea floor with
white representing the highest reflectance and black the
lowest reflectance. As seen in Figure 3-2, the resolution
of each pixel is distorted (30 meters by 218 meters) due
to the ships motion along a track perpendicular to the
scanning direction. The smaller value (30 meters) is the
resolution in the cross-track direction while the larger
value (218 meters) is in the along track direction. Prior
to forming the mosaic images, aspect ratio distortion is
removed by correcting for geometric and radiometric

17

K.d

distortions in the raw data. The final resolution, after
correction, used to create the mosaics is about 50 meters
X 50 meters. This relatively low resolution image can
show only large scale features but may point out areas
wrich deserve additional attention. Also note that this
resolution is several orders of magnitude better than the
available bathymetric data. [Ref. 6, p. 3]

Digital sonar imagery data was not available for use
in this thesis. In order to determine the effectiveness of
this imaging method, the digital image data was created by
locally digitizing the mosaics contained in the atlas.
This provided digital imagery data in the following form,
512 x 512 pixels with =ach pixel using one byte of storage
resulting in 256 shades of gray. This data is stored on
disk in direct access form as 512 fixed length records
with 512 bytes per record. Record one is the northern end
of the image and record 512 is the most southern end of
the image. Figure 3-3 illustrates the orientation of the
image file. The disk file is 1loaded into the variable
IMAGE(*,*) at runtime.

Ideally, the digital imagery data would be directly
available, either from the GLORIA side-scan sonar or from
other sonar systems. If this were the case, the data would
require processing to remove the different sources of
error and to convert it from its native form into the

form required in this project. Processing techniques for

18

<
cot 1
cou

812

ROV 1
37. OON. 127, 00V

38, OON, 128, 00V
ROV 512 ' !

Figure 3-3 Image File Orientation

GLORIA digital data is discussed in Ref. 7, "Processing
Techniques for Digital Sonar Images from GLORIA" by Pat S.
Chavez, Jr.

The current limitation for input data is 70 rows by 70
columns for the elevation data and 1024 rows by 1024
columns for the image data. These dimensions may be

increased to accommodate higher resolution data; the

19

m

tradeoff is speed of execution. The number of triangular
panels is a function of the elevation data size,

specifically:

#panels = ((#rows = 1)* 2) * (#cols - 1) (3.1)

An elevation file with resolution 20 x 20 has 722

panels; increasing the resolution to 100 x 100 results in

19,602 panels. Each panel is projected point by point then
sorted and drawn for every image view constructed. The
increase in computation time follows directly. In addition
to the elevation file resolution, the image file
resolution may be increased. The cost in computation is
not severe in this case because the image file is accessed
only once when the image pixels are averaged to calculate
the color or gray level for the individual panels. This is
done prior to displaying the first image and is not

repeated unless the program is exited and restarted.

20

IV. ALGORITHMS FOR COMBINED 3-D PERSPECTIVE DISPIAY

The main routine begins by reading two input data
files into the arrays RELEV(*,*) and IMAGE(*,*). Figure
4-1 illustrates the steps involved in displaying the image
on the monitor.

The procedure begins by forming the triangles in the
grid of the elevation data, averaging the image pixels
inside each triangle and assigning the average gray
intensity to the panel (one triangle). The observer
location is read, then the image plane coordinate system
is constructed. Based on the orientation of the image
plane the [M] matrix is calculated and used to map the
elevation points to the image plane. A 2~D to 2-D affine
transform is used to convert the points from image plane
coordinates to the screen coordinates. To display the
perspective view on a flat screen, triangles which are
hidden behind foreground objects must be removed. This
hidden surface removal is performed by calculating the
distance from the panel to the observer and drawing the
panels in sequence from the farthest to the nearest. This
chapter will cover these areas in detail and also discuss

alternatives which were considered, but not implemented.

21

Begin

Load input data file
Read in elevation (bathymetric) data
Read in imagery data

Construct triangles in elevation data grid
Average the gray shade in each triangle

Get observer location

Form the image plane vectors
Calculate the elements of the (M] matrix

Transfcrm to the image plane
Determine which panels are visible

Convert to screen coordinates
Remove hidden surfaces
Plot results on screen

End

Figure 4-1 Basic Program Flow

A. POLYGON FORMATION AND SHADING

Solid objects may be represented in numerous ways.
Some objects lend themselves to being described in terms
of a number of planes or surfaces. A cube, for example may
be precisely defined with six planes ([Ref. 8, p. 189]. As
the object or scene becomes more complex, the number of
surfaces required to accurately describe it increases.
This method of representing a 3-D surface by plane

surfaces lends 1itself particularly well to this

22

1
@

application. It allows for easy calculation of the color
or gray level by averaging of pixels contained within the
panel, easy transformation to the image plane, and easy
use of graphics hardware to execute the polygon fill
operation. This last feature is most important; earlier
work in this area pointed out the amount of time required
to draw based on a point by point method [Ref. 2, p. 56].
Using the graphics hardware polygon £fill capability
alleviates this problem.

The input elevation data is supplied in gridded form
and is easily partitioned into squares and ultimately
into triangles. Figure 4-2 illustrates the partitioning of
the elevation data into triangles. The procedure for
selecting the gridsquares and forming the triangles is
given as psuedocode in Figure 4-3. The column coordinates
of each point are stored in IA(*) and the row coordinates
are stored in the JA(*) array. Starting in the southwest
corner, the program selects four elevation points which
form a gridsquare. These four points are called node_a,
node_b, node_c and node_d. The gridsquare is divided into
two triangles by calculating the equation of the 1line
which divides it. This dividing 1line is completely
described by the slope and y-intercept. The column
boundaries are defined by IA(node_a) and IA(node_b); the
row boundaries are defined by JA(node_a) and JA(node_c).

For each incremental step from the eastern (right hand)

23

North

"GRID-
SQUARE"

e East

View from above looking down on the terrain.

-Terrain elevation points are connected
to form triangular polygons with common
edges.

Figure 4-2 Polygonal Terrain Construction
(Ref. 3, p. 35]

24

rIlllllllIlll-lIIIIIIllIIlI-I-IlIllIIlIlIIIIIIII---------—w~

BEGIN
DO select a gridsquare
(*select four nodes which make one gridsquaret*)

READ node_a

READ node_b
READ node_c
READ node_d

(*calc slope and y-intercept of line forming
the triangle*)

slope = rise / run
y-intercept = y - slope * (x)
DO M = IA(node_b) to IA(node_a) step -1
I¥Y=(slope) * M + y-intercept
DO L = JA(node_b) to IY step -1
(*average image pixels in lower trianglex*)
END DO
DO L = IY to JA(node_c) step -1
(*average image pixels in upper triangle%*)
END DO
END DO
PL_AR(*,*) = nodes of triangle, average gray shade
END DO

END

Figure 4-3 Polygon Formation Psuedocode

| @

25

rlI-IlIl-lIIIII------------'.-.--'-----r*

boundary, IA(node_b) to the western (left hand) boundary,
IA(node_a), a value of y equal to IY is calculated based
on the equation of the dividing line. The image pixels

above and below this line are averaged separately for the

upper and lower triangles. The process is repeated for
each incremental step in the columns from right to left.
This scanning and averaging pattern is illustrated in
Figure 4-4. Note that the scan pattern is from bottom to
top, right to left in each triangle. [Ref. 2, p. 39] The
average shade of the triangle along with the panel number
and vertices are stored in array PL AR(*,*). The data
structure is shown in Figure 4-5. Notice that PL_AR(*,S5)
generally is not used, it will be used to store the

maximum distance of the plane from the observer.

B. IMAGE PLANE FORMATION, PERSPECTIVE VIEW CALCULATION
After the shading for each panel is calculated, the
observer's location is entered. This consists of latitude
and longitude (deg, min, sec), height with respect to sea
level and heading. The latitude, longitude and height data

is converted to object space coordinates X1,Y1,21 while

the heading is used to select a second point in front of
the observer. This second point X2,Y2,Z2 forms the line of

sight (LOS) vector for the observer. The negative LOS

26

i
e

<0, 0) COLUMN

rov =
\l/ IMAGE COORDINATES

NDOE_C UPPER TRIANGLE NOOE_D

@ /]\T/\A/\A
AN

N4\

\ /
/ M

m @ @ ... G151 (51D
NODE_A LOVER TRIANGLE NODE_B

N —>

Figure 4-~4 Gridsquare

JA(#) -

27

[4
s .
w o < S
= - - -
& , x x
= & =] o
" > & e |8 8
s .8 2 & |3 z
(]
z
Slde |48 |48 [z |3
« =
- |2 |29 2z i -
1 3680 3721} 3720 142 108979
2 3659 3720 3719 122 109178
3 3658 3660 3720 123 1038178
4 3598 3680 3858 117 108434
Figure 4-5 Layout of PL_AR Array

vector is the z-axis of the image coordinate system as

seen in Figure 2-3. This is formulated as shown:

ZVECy
ZVECy
ZVECy

ZVEC = ZVECy X + ZVECy y + 2VECy z

X1 - X2
Y1 - Y2
21 - 22

28

(4.1)

The image plane y-axis is constructed by creating a vector
which points upward from the center of the earth to the
observer location. The (X,Y,Z) coordinates of the observer

location (X1,Y1,Z1) form this vector. The y-axis is

described by:

YVECK = X1
YVECy = Y1 (4.2)
YVEC; = 21

.

YVEC

]

YVECy x + YVECy y + YVECg 2

The image coordinate system 1is a right-hand system.
Therefore, the cross product of the y-axis and z-axis
forms the x-axis. The x-axis of the image plane is

constructed as follows:

XVECy = ((YVECy x ZVECgz) - (YVECz x ZVECy))
XVECy = ((YVECy x ZVECy) - (YVECy x 2VECy)} (4.3)
XVEC, = ((YVECy x 2ZVECy) - (YVECy x ZVECy))

XVEC = XVECyx X + XVECy y + XVECy 2z

The [M] matrix is calculated using the relationship
developed in Chapter Two, equation 2.2. Recall that each
element of the [M]) matrix is the cosine of the spatial
angle between the axis of the image coordinate system and
the object coordinate system axis. The object space

coordinate axis may be represented as unit vectors:

XAXIS = 1x + @y + @z

YAXIS = @x + 1y + 02z (4.4)
ZAXIS = @x + By + 1z °
29

T e —

The cosine of the spatial angle between two vectors is

determined from the dot product of the two vectors.

A-B=|n||B|cos e (4.5)

The dot product may be expanded as shown:

cos 6AB * A7 1B

(4.6)
AeBy + AyB, + AZB,
TYREX

cos OAB -

Substituting the image space x-axis vector (xvec) and the
object space X-axis vector (XAXIS) for [A] and [B] allows

M1l to be calculated:
XVECX'XAXISX + XVECY'XAXISY + XVECZ'XAXI§Z

Myy= cos €& =
11 xX IXVEC| IXAXIS!

_ (XVECy-1) + (XVECy-@) + (XVEC;-@)
IXVEC| - 1

(4.7)

u.. o _XVEC
11 xvEC|

The other elements of the [M] matrix may be found in a

similar fashion. This results in:

__XVECy y.. o XVECy y.. o XVEC
11 = “xvEC| 12 = “xvEC| 13 © IXVEC|
YVEC YVEC YVEC
Myy = ——2& . —1 Moy = ——& (4.8)
21 "~ yVEC| 22 ~ yvEC| 23 7 TYVEC |
2VEC 2VEC 2VEC
-.___X H -__.—! __.._l
M31 = zvEc) 32 ® TzvEC| M33 * ZVEC|
30

This method of calculating the image coordinate axis
and the corresponding [M] matrix elements results in a
viewing plane which is oriented vertically and faces in
the direction of the observer course.

An alternative to this method is that, instead of
specifying the course to see the perspective view, one can
have the image plane always face the object. This would
simulate rotating the object while keeping the observer
location fixed. The decision to use the first method is
based on the feeling that it results in a more natural

view for the observer.

C. TRANSFORM TO THE IMAGE PLANE

After the [M] matrix is constructed the elevation
points are projected onto the image plane. Points which
lie behind the image plane or behind the observer are not
projected. The method used to select which points to
project and the projection equations are presented next.

Determining which elevation points are located behind
the image plane is done by finding the cosine of the
angle between a vector formed by the negative z-axis of
the image plane and a vector drawn from X2,Y2,22 to the
object point. Solving for the cosine of the angle and not
the angle itself eliminates the need to use trigonometric
functions, and provides faster execution. Psuedocode for

this procedure is given in Figure 4-6.

31

BEGIN
DO IR = 1 to Number of elevation pts.

(*get XYZ coordinates of point*)

X = XYZ(IR,1)
Y = XYZ(IR,2)
2 = XYZ(IR,3)

(*form the observer LOS vectort*)

OBS_VECX = X2 -~ X1
OBS_VECY = Y2 - Y1
OBS_VECZ = Z2 - 21

(*form the object vector*)

OBJ_VECX = X - X2
OBJ_VECY = Y - Y2
OBJ_VECZ = 2 - 22

(*£ind the cosine of the angle between the
OBS_VEC and OBJ_VEC*)

COS_THETA = (dot product of OBS_VEC, OBJ_VEC)/
(Mag (OBS_VEC) x Mag(OBJ_VEC))

IF (COS_THETA > 0) THEN

Project onto image plane

Calculate depth of panel
ELSE

Mark as a non-visible point
END IF

END DO

END

Figure 4-6 Psuedocode Determine Which Panels to Project

32

i
@

The procedure begins by forming two vectors, the
observer LOS vector and the observer to object vector
(object vector). Ideally, the origin of the image plane
coordinate system would be used to form the "“observer to
object vector", but the (X,Y,Z) coordinates of this point
are not readily known. The observer location (X1,Y1,2Z1) is
not used because it is behind the image plane and will
result in some panels being viewed which are behind the
image plane. The point (X2,Y2,22) is used as an
approximation of the origin of the image plane. If the
angle between the LOS vector and the object vector is
greater than 90 degrees, the point lies behind the image
plane and will not be projected onto the image plane.
Figure 4-7 illustrates the orientation of the vectors and
the image plane. The cosine of the angle between the two
vectors is again found by using the dot product method.

If the angle is less than 90 degrees, the cosine will
be a positive number. If the angle is greater than 90
degrees the cosine will be negative; this indicates the
point is not in the hemisphere in front of the observer.
If the point is not visible in the forward hemisphere then
the point is flagged as hidden. Generally each point is
associated with up to six triangles:; marking each point
as hidden will prevent attempting to draw triangles which

may be partially behind the image plane.

33

— T

DBJECT

X2, ve, 22 POINT #2

IMAGE PLANE

(X1,Y1,21

CBSERVER LOCATIDN

DBJECT POINT #

Figure 4-7 Image Plane Object Vector

The points which are in the forward hemisphere are
projected onto the image plane wusing the relation
developed in Chapter Two, equation 2.6 which is repeated

here for clarity:

M xp - Xg - X
A~ *o B F)
ya -ve | =k [M] | vg - ¥ (4.9) a
-f 2 - 2
)
1

34

.\

Expanding to three separate equations gives:

xp - Xg =~ K[M) (Xg-Xp) + My, (Yp-Yp) + M)3(2p-2p) | (4.10)

ya - ¥g = k[M1 (Xg-Xp) + Map(¥Yp-Yp) + M33(2p-Zp)]| (4.11)
-£ = k[M31(Xg-Xp) + M3a(Yg=Yp) + M33(2p-Zp)] (4.12)

Then dividing (4.10) and (4.11) by (4.12) vields:

x - x = - Hll(xB—XF) + HIZ(YB-YF) + Hla(zB—ZE) (4.13)
] H31(XB-XF) + Haz(YB‘YF) + H33(ZB‘ZF)

+

- —f HZI(XB-XF) + HZZ(YB-YE)
¥ - Y M3y (Xg-Xp) + M3p(Yp-Yp)

-+

:§§:Z§:§§;] (4.14)
Equations (4.13) and (4.14) are the relations used to
transform the elevation data points to the image plane.
They allow projecting all elevation points in the
hemisphere forward of the observer at one time. Altering
the size of the image plane will not require the elevation

points to be projected a second time. [Ref. 4, p. 142)

D. AFFINE IMAGE PLANE TO SCREEN TRANSFORM

The image plane coordinates must be transformed to
the screen coordinate system. Figure 4-8 illustrates the
image plane and the screen coordinate systems. The maximum
frame size values of the x and y axis in the image plane
system are determined by the desired magnification or
field of view and the y-scale factors.

In general, the affine transform will map between any

2-D coordinate systems allowing for a rotation of the

35

X (0, D
< A

IMAGE Y SCREEN

COORDINATES COORDINATES

—

(0. D

Figure 4-8 Image to Screen Coordinates

axis, horizontal and vertical scale changes, two
translations and a non-perpendicularity of the axis. The

general form of the affine transform is [Ref. 4, p. 593]:

*1) - ! P2 "1} [X2” Oy (4.15)
Y1 ajbp - azb -az a3 y2- C2

where: ay

Sx (cos # =< sin E)

a, = S, (sin g +5 cos p)
by = Sy (-sin #)

b, = Sy (cos #)

£ represents a non-perpendicularity of the axis
represents a rotation of the axis

Cl = x translation of origin

C, = y translation of origin

36

Starting with a magnification factor of 1.0 and a y-
scale factor of 1.2, the x and y frame sizes are 35000
and 29000 respectively. These values must be mapped onto a
screen coordinate system which ranges from 1-512 in both
the x and y direction. There are two scale changes, two
translations, no rotations and no non-perpendicularities
involved with this transformation. This results in sigma
equal to zero and beta equal to zero. Substituting these
values results in:

21 = 5x Py =@ (4.16)
a, = 4@ by, = Sy
Inserting these values and expanding the matrix equations

gives:

X, - C - C
X, = -2 -1 y - Y2 ~ *2 (4.17)
1 Sy 1 s

The scale factors are formed at runtime to allow the
changes in magnification (field of view) and elevation
scale. Figure 4-9 is psuedocode which implements the 2-D
transform. Note that the variables Al, A2, Bl, B2 are in
terms of the image plane frame sizg. This approach allows
the user to change the magnification or elevation scaling
interactively at this point. Also note that each elevation
point is checked for non-visible status prior to the
transform. This checking saves execution time by avoiding

points not in the field of view.

37

|

BEGIN

Cl = image x axis maximum

C2 = image y axis maximum

Al = image x axis frame size / screen x axis maximum
B2 = image y axis frame size / screen y axis maximum
DO IR = 1 to Number of elevation pts.

IF (point .EQ. visible) THEN
Xscreen = (ximag - Cl) / Al

yscreen (yimag - C2) / B2
END IF

END DO

END

Figure 4-9 Affine Transform Psuedocode

E. HIDDEN SURFACE REMOVAL

In order to properly display the perspective view, the
surfaces hidden behind front surfaces must be dealt with.
Earlier work utilized a 2Z-buffer to perform the hidden
surface removal (Ref. 2, p. 41)]. The Z-buffer method
utilizes a pixel by pixel depth buffer. Each pixel
position on the screen corresponds to a location in the
buffer. The buffer is initialized to a maximum depth, then
prior to drawing each pixel the depth is compared with the

depth already stored in the buffer. If the pixel depth is

|®

less than the depth stored in the buffer, then the pixel

38

is drawn and the new depth is stored in the depth buffer.
Earlier work by Coleman pointed out the poor performance
of this technique when executed in software [Ref. 2, p.
55). Several other methods of hidden surface removal were
investigated; each will be discussed briefly and the
disadvantages listed.

First, the method of "bounding rectangles" was
investigated. In this method a rectangle is formed around
each triangle. This rectangle is as small as possible and
is constructed from the three vertices forming the
triangle. The (x,y) coordinates of each vertex are checked
and the minimum and maximums of both the x and vy
coordinates form the boundaries of the rectangle. Now the
vertices of all other triangles are compared to the
rectangle. If the (x,y) coordinates of a vertex lie within
the boundary of the rectangle, the triangle is marked as
overlapping and the zZ-buffer routine is used to handle the
hidden surface removal. If the triangle does not overlap
any other triangles, it is drawn to the screen. Originally
the intent was to reduce the number of panels which needed
to be drawn using the Z-~buffer method. This was not
achieved because the panels are triangular vice
rectangular. Several experiments showed that no triangles
passed the bounding rectangle test and consequently no

savings in execution time was realized. [Ref. 9, p. 246]

39

A second method utilizes a test function for each side
of a triangle. A test function is formed for each side of
a triangle. This test function is formed from the equation
of the line describing the side. The vertices of all other
triangles are checked against the test function. This
results in nine comparisons for every triangle checked.
The calculation time is excessive, also the results were
similar to the results of the bounding box test. Very few
triangles passed the test and the Z-buffer method had to
be used on the majority of panels, with no savings in
execution time.[Ref. 9, p. 24]

Another approach, known as the "Painter's algorithm",
is not hidden surface removal at all. [Ref. 8, p. 265]
Here the panels are drawn to the screen in sequence from
background to foreground. The panels which are hidden from
view are covered with the panels which are closer to the
observer. This is the approach used in this software. Each
panel is sorted into order based on the maximum distance
of the vertices from the observer location. The choice of
sorting algorithms has a large affect on the efficiency of
this method. Originally, the routine incorporated a simple
bubble sort. The cost in performance is not noticeable
with a small number of panels, but as the resolution of
the bathymetric data increases, the number of panels
increases as shown in equation 3.1 which is repeated here.

panels = ((#rows - 1)*2) * (§cols - 1) (4.18)

40

|
A

T

The poor performance of the bubble sort becomes apparent
as the number of panels increases beyond 500. Two
alternate sorting routines were used with this routine,
the shell sort and the quick sort. Table 4-1 is a table
which shows the measured performance of these sort
routines. Clearly for large numbers of panels the quick
sort is the most efficient. Based on these results the
quick sort was selected for use in the hidden surface
routine. Figure 4-11 is psuedococde which describes the

hidden surface removal procedure.

TABLE 4-1 SORT PERFORMANCE
Time in seconds
panels Bubble Shell Quick
500 2 <1l <1
1000 8 <1l <1l
2000 33 <1l <1l
3000 80 1l 1
5000 210 2 1
10000 900 5 1.5
20000 -——— 14 3
50000 —-——- 56 9
41

F.-...-I-lIIlIIII-.I-I-I-..-.-.-lI-.-.-I--I-----"--ﬁ-'
|
F

BEGIN

L I

(* create sort key by counting the panels in front of
the image plane. Depth_key(L) contains the panel ID
number *)

DO IR = 1 to NPLANES
IF (panel .NOT. behind field of view) THEN
INCREMENT COUNT
Depth_key (COUNT) = IR
END IF
END DO
(* calc maximum depth of each visible plane *)
DO L = 1 to COUNT
A IR = Depth_key(L)

PL_AR(IR,5)=
MAX (DEPTH (node_a) , DEPTH(node_b) ,DEPTH(node_c))

END DO

(* call sort routine to sort the panels on the
maximum deptht*)

CALL QUICKSORT

END

Figure 4-11 Psuedocode for Hidden Surface Removal
by Sorting

Upon completion of the hidden surface removal routine,
the screen is erased and the panels are plotted. The
vertices for each panel along with the shading are stored
in array PL_AR(*,*). The shading value is clipped to a

range of 1-250 vice the original 1-256 due to the DEC VMS

42

|

window manager. This maintains the background color of the
screen and the window attributes. The panels are read in
sequence using the sort index. The (x,y) screen
coordinates of each vertex and the shade are passed to the

plot subroutine and the panel is drawn on the screen.

F. RESULTS

Data cropped out of the primary bathymetry data file
covers an area bounded by 37:00:00 N. latitude, 126:00:00
W. longitude to 36:00:00 N. latitude, 125:00:00 W.
longitude. Figure 4-12 is the digitized image of the
mosaic used for the image data. The first synthesized view
Figure 4-13, is from an observer 1location of 36:0:0 N.
125:30:0 W., 4000 meters below sea level and heading
equal to 000 degrees. The y-scale exaggeration is six and
the magnification factor is one. Figures 4-14 a to c are
displays of the same area from different observer
locations. Figures 4-14a and 4-14b are offset from the
original 1location east and west by 25 minutes of
longitude. Figure 4-14c is from the same location as the
original but the height is 2000 meters below sea level.
These images display the ability to "see" the ocean bottom
in a new fashion. The resolution of the input elevation
data was originally 5 minutes by 5 minutes. This data was
interpolated in both 1latitude and 1longitude to a

resolution of 1 minute by 1 minute in order to achieve a

43

better shading rendition. This reduces the number of
pixels averaged for each triangle and improves the shading
of the generated image. Figure 4-15 is an image using the
original 5 minute by 5 minute resolution data. Notice
that the size of the panels is larger and the shading
rendition is much more coarse. In addition to affecting
the shading, the resolution of the elevation data directly
affects the physical shaping of objects in the terrain.
This program does not utilize any method of curve fitting
between adjacent elevation points and simply draws
straight 1lines between the points. This results in

objects being coarsely approximated in the synthesized

view.

44

Figure 4-12 Mosaic Image

[Y
Pt S dgwal #eEal Dte

Py 31T IR ION 3

mLLETY OME DF L ¥ it
w ogvetalae
Vimile ta * o
I e e av
Tgwm Inage

LI P

Figqure 4-13 Obs Loc: 36:00:00 N Depth 4000 m
125:30:00 W Heading 000 deg

45

|-

.
-l
poi o~ - "
pa ¢ 221 -
3 ek »

LI T IO L
T oeiale &l

A L Y LA L N
: Lioaew Lowws o
ol

Figure 4-14a Obs Loc 36:00:00 N Depth 4000 m
125:05:00 W Heading 340 deg

Figure 4-14b Obs loc 36:00:00 N Depth 4000 m
125:55:00 W Heading 020 deg

46

b ""3““*": WO L e
: i cunsiimed . PR =

<o

Figure 4-14c Obs Loc 36:00:00 N Depth 2000 m
125:30:00 W Heading 000 deg

Lﬁﬁ :

61 et 3

'?“.‘4'(R 3

!

TR 8]

[

H .

L o
f L.

Figure 4-15 5 x 5 Minute Resolution

47

V. OPERATIONAL ASPECTS OF THE PROGRAM

The software utilizes an input file to locad the names
and geographic 1locations of the data files. This input
file may be created by an ASCII editor or created within
the program by following the prompts. The format of the
input file is shown in Figure 5-1.

If the input file exists, the user simply enters the
name when prompted. The program will seem to pause at this
point while reading in the data files, forming the panels
and averaging the image pixels. When complete with these
steps, the software will prompt for the observer location.
This location is entered in terms of observer latitude and
longitude in degrees, minutes and seconds. Southern
latitudes and western longitudes are entered as negative
values. Also entered is the elevation of the observer and
the heading of the observer. Elevation is in meters with
respect to sea level with values greater than sea level
entered as positive values and elevations below sea level
entered as negative values. The heading is entered as a
value from 0-360 degrees where 0 deg. is north, 90 deg. is
east, 180 deg. is south, 270 deg. is west and 360 deg. is

north again.

48

J’.

Elevation data file name

of rows of elevation data

of columns of elevation data
Image data file name

of rows of image data

$ of columns of image data

Latitude/Longitude of Northwest corner of image
data in (deg,min,sec)

Latitude/Longitude of Southeast corner of image
data in (deg,min, sec)

Title for the screen image

Figure 5-1 Input File Format

At this point the software will draw the perspective
view on the screen. It takes 40 seconds to produce one
image using 61 x 61 elevation points and 512 x 512 image
points. After the image is drawn a menu is presented. The
operator may alter the magnification or field of view,
change the elevation scale exaggeration, enter a new

observer location, save the image or exit the program.

A. ALTER MAGNIFICATION OR FIELD OF VIEW
The perspective view transformation simulates viewing
through a camera viewfinder. The observer selects the

location and points the camera, and the image is formed in

49

]

the viewfinder. The magnification or field of view is
changed by changing the focal length of the lens.

The magnification factor of the initial image is one.
The values of the image plane x-axis and y-axis maximums
are initially set to 35000 and 29000 respectively. This
loosely corresponds to a 35mm x 29mm frame size of a 35mm
camera. The focal length corresponds to an initial focal

length of 50mm. The field of view is given by:

xframe]

Field of View = 2 tan~! 2(focus) (5.1)

Using the values above results in a field of view of 36.8
degrees. This field of view is approximately equal to the
field of view from a 35mm camera with a 50mm "normal"
lens. This field of view corresponds to a magnification
factor of one. Table 5-1 shows the field of view for
various magnifications.

When changing the magnification on a camera, the
standard method is to change the focal length of the lens.
This method presents a disadvantage here in that it
requires the complete 3-D to 3-D transform to be
performed for every magnification change. By changing the
frame size instead of the focal length, the new image is
generated faster because the change is made during the
affine image plane to screen plane transformation. The
magnification changes are entered as values with respect

to the normal magnification.

50

|

TABLE 5-1 MAGNIFICATION VERSUS FIELD OF VIEW

Magnification Field of View (deg)

69.9
38.5
26.2
19.8
15.9
13.3
11.4
10.0

8.9

8.0

b WWN N
ovouvouiounowm

B. CHANGING THE ELEVATION SCALING

Altering the y-axis scale allows exaggeration or
reduction of the y-scale. Views of the terrain with the
elevation scaling set at 1:1 result in views which have
very little appearance of height. By modeling the frame
size as a 35mm camera frame, a 1.2:1 scaling is
introduced. Research conducted by the U.S. Army Research
Institute for the Behavioral and Social Sciences indicated
that vertical scaling ranging from 1.25:1 to 1.50:1
presented the most natural views. [Ref. 3, p. 37]

The elevation scaling is changed in a fashion similar
to the magnification as a value with respect to the 1:1

scale.

51

|

.

P —m

C. ENTER A NEW OBSERVER LOCATION

This option allows - the operator to enter a new
observer location. The current settings for magnification

and elevation scaling are maintained.

D. SAVING AN IMAGE

Selecting this option allows multiple images to be
saved to a disk file. When the option is selected the
first time, it will prompt for the file name for the
images to be stored in. Two data files are created, *.IMG
and *.SIZ. If the filename extension is specified then it
is used instead of the .IMG extension. Images will be
saved to *.IMG file for the entire session each time the
(S)ave option is selected. The entire set of images may be
viewed sequentially using a program named PLAYBACK.FOR.
This will display all the images stored in the image file
at a rave of one image per second. Another program,
UISTO512.FCR will convert a single frame from the saved
images to a 512 x 512 row-column format, with 512 fixed
length records and 512 bytes per record. The *.SIZ file

contains the buffer size data required by the playback

routine.

52

P

VI. ONCLUSIONS

A. GENERAL
- The goal of this thesis was creating the 3-D

perspective view of ocean bottom terrain and applying

shading or color information from an image file. This goal
was achieved and the ability to "see" the terrain in this
fashion holds promise for future work in many fields.

The program presented here combines terrain elevation
data with shading information from a second data source.
This fusion of bathymetry and imagery data results in a
3~D perspective view of the ocean bottom in a fashion
which appears natural to the observer. This type of
display system, which combines multiple sources of data
into a form that is easier to comprehend, has potential
uses in mapping, geologic exploration and weapon system
displays. It has direct use in any geographic information
system where the data stored consists of (x,y) coordinates
and an attribute. This program could merge any two layers
of information from such a system and display a view which
is easier to interpret. The data utilized in this project
was not a part of such a system, but easily could have
been. In this case the first layer of data would be the
(x,y) location and the elevation with respect to sea level
and the second layer of data would be the (x,y) location

53

M

and the shading value. Combining the layers of data from

multiple sources is a form of sensor fusion.

B. LIMITATIONS

There are several limitations in this program. First,
the image plane orientation is fixed in the vertical
direction with respect to the observer heading and
location. This implies that the perspective view formed
simulates the view from a vehicle in 1level flight.
Allowing the image plane to deviate from vertical would
allow the observer to 1look down on the terrain and
generate views not presently permitted. Second, the
shading values are clipped to 250 vice 255 shades. This is
done in order to maintain five separate entries in the
virtual color map which correspond to the system colors. A
third probliem exists with the geographic areas of the
input data. The conversion from latitude/longitude
coordinates to geo-rectangular coordinates 1is not
implemented at the hemisphere boundaries such as at the
equator (0 deg. N.), or at O deg. longitude. The input
data must be completely above or below the equator and

similarly completely east or west of 0 deg. longitude.

C. PERFORMANCE
Forming the 3-D perspective views requires the input

data to be transformed from one 3-D coordinate system to

54

the image plane system and ultimately to the screen
coordinate system. As discussed in Chapter Three, the size
of the input data files, specifically the elevation data
will affect the performance of the program. Table 6-1 is
a breakdown of the amount of time required to complete
each of the major sections of the program. The overall
performance is satisfactory and breaks down to 40 seconds
to complete a view after the observer location is entered.
The plotting of the view on the screen is 89% of this
time, while the calculation involved accounts for only 11%
of the time. Clearly the plotting time must be improved
prior to spending an appreciable amount of time in the
calculation subroutines. The length of time required by
the plotting routine is related to the number of triangles
being passed to the graphics hardware. The communication
involved in passing the vertices of each panel to the
graphics processor is the bottleneck. Improvements may be
achieved in this area by writing a driver to directly load
the appropriate values to the graphics hardware and
bypassing the overhead of the software routines presently
utilized.

The combination of the perspective transformation and
the hidden surface removal routines account for 95% of the
11% calculation time as seen in Table 6-1. Other methods
of achieving slight performance increases may include a

hardware implementation of the perspective transformation

55

——v

TABLE 6-1 COMPUTATION TIME

Subsection Resolution
61 x 61 13 x 13

(time in seconds)
Set up graphics .80 .53
User input -— -
Read elev. file .25 .11
Read image file 10.22 10.69
Form triangles 3.3 .3
Average gray shade 6.87 2.54
Observer location -—- -—
Form [M] matrix .01 .01
(M] multiply 2.51 .12
Affine transform .23 .01
Hidden surface removal 1.79 .07
Plotting 35.24 1.76

Total elapsed after _—
Observer location 39.78 1.97

Calculation time
percentage 11.4% 10.6%

matrix multiplies and a more efficient hidden surface
removal routine. Altering the hidden surface removal
routine most likely will result in more calculation time
required in that area, but may result in substantial

savings in the plotting time. The approach for hidden

56

surface removal used here does not actually remove hidden
_ triangles but draws them in order from the background to
foreground. By altering the hidden surface routine so that

hidden panels are not plotted at all, a savings may be

made in the time required to plot the view.

D. FUTURE WORK

This program is a first step in the direction of
combining various layers of data into a single form. There
are several areas which are being considered for further
work.

The type of data merged onto the elevation grid is not
limited to the imagery data used here. Magnetic anomaly
data is available and could also be merged onto the grid.
This would permit the observer to make correlations
between the terrain and the magnetic response.

The original effort in this area began with aerial
photographs and surface terrain. Applying the terrain
elevation data and an aerial photograph to this program
would broaden the versatility of the program greatly.

Combining two layers of data is a starting point, the
ability to combine three or four layers onto the
elevation grid using colors to distinguish the layers may
be possible.

In order to make this program truly useful, a user

interface must be designed. As a minimum this requires a

57

method of entering observer locations based on the current
location and perspective view. A particularly effective
user interface would involve using a pointer to select an
area on the screen and tell the program "I wish to go
there". This would permit "driving around" an area of
interest.

Finally, a method of loading data from the storage
device and merging it with the currently loaded data is
required. This would remove the boundaries from the image
displayed on the screen so that when the observer location
is near the edge of the current area, the adjacent areas

will be loaded and displayed.

58

APPENDIX A. PROGRAM S Y

This appendix 1lists the different routines of the
program by subroutine name and briefly lists the inputs
and outputs of the subroutine. Also given are the names of

the subroutines which interact with each subroutine.

1. SONAR3D
A. Function
Main routine, calls other supporting routines to

complete the 3-D perspective view

B. Input
None

C. Output
None

D. Calling routine
None

E. Called routine
INPUT
READ_ELEV
READ_IMAGE
TER_XYZ
IM_REFAVG
OBS_LOC
M_ORIEN

59

-

NEW_IJ

XY21J

HIDDEN_SURF

CLRSCRN

2. Subroutine INPUT

A.

Function

Reads in or creates the initial data required for

the elevation data file and the image data file.

Input
NAME -
ELFILE
EL_S1Z
EL_REC
IMFILE
IM_SIZ

IM_REC

name of input data file

elevation data file name

elevation data number of columns

elevation data number of rows

image
image

image

ILAD,ILAM,ILAS

ILOD,ILOM,ILOS

FLAD, FLAM, FLAS

FLAD,FLAM, FLAS

TITLE -

screen

Output

data file name

data number of columns

data number of rows

- northwest latitude of image file
- northwest longitude of image file
- southeast latitude of image file

- southeast longitude of image file

50 character title placed on the image

Same as input

Calling routines

60

N

|\

~

SONAR3D

h E. Called routines
CLRSCRN
b 3. Subroutine READ_ELEV

A. Function

Read in the elevation data file from disk

B. Input
None
C. Output

ILATD,ILATM,ILATS =~ southwest latitude of the
elevation data file
ILOND,ILONM,ILONS - southwest 1longitude of the
elevation data file
D_LAT -~ latitude grid size in seconds
D_LONG - longitude grid size in seconds
IENDM - number of rows of the elevation data
IENDN - number of columns of the elevation data
RELEV(*,*) - array containing the elevation data
points
D. Calling Routines

SONAR3D

E. Called routines

None

61

4. Subroutine READ_ IMAGE

A.

Function

Read in the image data file from disk

Input

IM_SIZ - number of columns of the image data
IM_REC - number of rows of the image data
Output

IMAGE(*,*) - array containing the image data
Calling routines

SONAR3D

Called routines

None

5. Subroutine TER_XYZ

A.

Function

Converts each elevation point to it's geo-
rectangular XYZ coordinates and calculates the
corresponding image row/column coordinates for each
point

Input

LATD, LATM, LATS - reference elevation latitude
ILOND, LONM, LONS - reference elevation longitude
D_LAT - latitude grid size in seconds

D_LONG - longitude grid size in seconds

RELEV(*,*) - array holding the elevation data

IENDM - number of rows of the elevation data

62

L -

IENDN -~ number of columns of the elevation data
ILAD,ILAM,ILAS - reference northwest image latitude
JLOD,ILOM,ILOS - reference northwest image
longitude

FLAD,FLAM,FLAS - reference southeast image latitude
FLOD,FLOM,FLOS - reference southeast image
longitudé

IM_SIZ - number of columns of the image data

IM_REC - number of rows of the image data

Output

IA(*) - array containing the image column
coordinates

JA(*) - array containing the image row coordinates

XYZ2(*,3) - array holding the (X,Y,2) coordinates of
each elevation point

Calling routines

SONAR3D

Called routines

CONV2SEC

DMS2XYZ

Subroutine IM_REFAVG

A.

Function
This routine forms the panel array containing the
nodes of the triangles and the average gray shade.

Inputs

63

IA(*) - array containing the image column
coordinates

JA(*) - array containing the image row coordinates
IENDM - number of rows of the elevation data

IENDN - number of columns of the elevation data
IMAGE(*,*) - array containing the image data
Outputs -

PL_AR(*,5) - array containing the nodes of the
triangle and the gray shade

Calling routines

SONAR3D

Called routines

None

Subroutine OBS_LOC

A.

Function

Calculates the observer 1location in (X,Y,Z)
coordinates given the latitude and longitude.

Input

LATD, LATM, LATS - Latitude of observer location
LOND, LONM,LONS - Longitude of observer location
HEIGHT - Observer elevation in meters

CTS ~ Observer course in degrees

Outputs

OBS_LOC(*) -~ array holding observer location

parameters

64

X1,Y¥1,21 - Geo-rectangular coordinates of observer
location

X2,Y2,22 - Geo-rectangular coordinates of second
observer point along LOS

Calling routines

SONAR3D

Called routines

DMS2XY2

Subrcutine M_ORIEN

A.

Function
Determine the orientation of the image plane and

calculate the [M] matrix parameters

Inputs

X1,Y1,Z21 - Geo-rectangqular coordinates of observer
location

X2,Y2,22 - Geo-rectangular coordinates of second

observer point along LOS
Outputs

M(3,3) - [M] matrix parameters
Calling routines

SONAR3D

Called routines

None

65

rll-IIIIIIlIllIlllllI-ll-IllIl'lIIlllIlIl--IlIl-I------

A.

9. Subroutine NEW_IJ

Function

Calculate the image plane coordinates of all object
points which are in front of the field of view.
Also mark as HIDDEN any nodes behind the image
plane

Inputs

X1,Y1,Z21 - Geo-rectangular coordinates of the
observer location

X2,Y2,Z2 - Geo-rectangular coordinates of the
second observer point along LOS

ITOT - Tot?I number of elevation points

XYZ(*,3) - array holding the (X,Y,Z) coordinates of
each elevation point

FOCUS - Focal length

M(3,3) - [M] matrix parameters

Outputs

IMAX(*) - x image coordinate

IMAY(*) - y image coordinate

DEPTH(*) - Distance from observer of each elevation
point
HIDDEN(*) - Flag for points hidden behind image
plane

Calling routines

SONAR3D

66

E. Called routines

!
h None

10. Subroutine XY2IJ

A. Function
Convert the image (x,y) coordinates to screen (i,3)
coordinates
B. 1Inputs
IMAX(*) - x image coordinate
IMAY(*) - y image coordinate
ITOT - Total number of elevation points
XIMA_MAX - image frame size (X direction)
YIMA_MAX - image frame size (y direction)
HIDDEN(*) - Flag for points hidden behind image
plane
C. Outputs
IA(*) - screen x coordinate
JA(*) - screen y coordinate
D. cCalling routines
SONAR3D
E. Called routines

AFFIN

11. Subroutine AFFIN

A. Function

67

12.

Calculates the coefficients for the AFFIN transform

from image coordinates to screen coordinates
Inputs

XIMA_MAX - image frame size (x direction)
YIMA MAX - image frame size (y direction)
Outputs

Al,A2,B1,B2,C1,C2 - parameters for the
transform

Calling routines

XY21J

Called routines

None

Subroutine HIDDEN_SURF

A.

Function

Remove hidden surfaces and plot to screen

AFFIN

Inputs

IA(*) - screen x coordinate

JA(*) - screen y coordinate

IENDM - Number of rows of the elevation data

IENDN - Number of columns of the elevation data
DEPTH(*) - Distance from the observer of each

elevation point

PL_AR(*,5) - array containing the nodes of the

triangle and the gray shade

68

o

HIDDEN(*) - Flag for points hidden behind the image
plane

VD_ID - Virtual display identifier

WD_ID - Window identifier

C. Output
None

D. cCalling routine
SONAR3D

E. Called routine
QUICKSORT
UISDCSERASE
UISSSET_WRITING_INDEX

UISDCSPLOT

13. Subroutine QUICKSORT

A. Function
Sort the panels based on maximum distance from the
observer

B. Input
ARRAY (*,5) - array to sort
KEY(*) - index to main array
COUNT - number of elements to sort

C. Output
ARRAY (*,5) - original array

KEY(*) ~ index to main array (revised order)

69

D. <¢Calling routine
HIDDEN_SURF
E. Called routine

None

14. Subroutine CLRSCRN
A. Function

Clear the screen

B. Input
None

C. Output
None

D. Calling routine
SONAR3D
INPUT

E. Called routines

None

15. Subroutine CONV2SEC
A. Function

Convert DEG,MIN,SEC coordinates to seconds

B. Input

DEG,MIN,SEC - Latitude or longitude in deg,min, sec

format
C. Output

SEC - Total number of seconds °

70

Calling routine
TER_XYZ
Called routine

None

1 . Subroutine DMS2XYZ

A.

Function

Convert DMS data to (X,Y,Z) coordinates

Input

LATD,LATM,LATS - Latitude in deg,min,sec format
LOND, LONM, LONS - Longitude in deg,min,sec format
HEIGHT - elevation with respect to sea level in
meters

Output

X,¥,Z2 - (X,Y,2) coordinates of input point
Calling routine

TER_XY2

OBS_LOC

Called routine

None

71

APPENDIX B. PROGRAM LISTING

PROGRAM SONAR3D
Rkkddhkkkhhhhkkhhikhhhkkhhhhkkhhkkhhkkhkkhhhhhhhhhhhihkhhhikihhkik

Cc

C

C THIS PROGRAM CONSTRUCTS THE ELEVATION FILE AND IMAGE
C FILE THAT IS REQUIRED BY THE 3-D PROGRAM. MAXTMIM

C ELEVATION ARRAY SIZE IS 70 ROWS X 70 OCOLIMNS. MAXTMIM
C IMAGE SIZE IS 1024 x 1024.
C
C
&
C
C

S e T e T e
IMPLICIT INTEGER (A-Z)

get graphics libraries
INCIUDE 'SYSSLIBRARY:UISENTRY'

the following variables define the elevation file maximm size
and the image file maximum size. In order to simplify altering
of these values, they have been grouped together. Change the
values in the DATA statement, and in the definition statements
which immediately follow.

NOONOONOO

COMMON /ELEV/ROW_ETEV,OO0L_ELEV,TOT ELEV,NPLANES

COMMON /IMAGE/ROW_TMAGE, oL , IMAGE

DATA ROW_EILEV,OOL _ELEV,TOT ELEV ,NPLANES/70,70, 4900, 10000/
DATA RCM IMAGE, OOL IMAGE/1024 1024/

BYTE IMAGE(1024,1024)

INTBGER HIDDEN (4900) , IA(4900) ,JA(4900)

INTEGER PL_AR(10000,5) ,DEPTH_KEY (10000)

REAL REILEV(70,70)

REAL*8 DEPTH(4900) ,XYZ (4900, 3) , IMAX(4900) , IMAY (4900)

CHARACTER EIFILE*13, IMFIIE*13,FILE NAME*13,6ANS#*1, TITLE*50

INTEGER IENIN, IENDM,ITOT, ILATD, ILATM, ILATS
INTEGER ILOND, ILONM,ILONS

INTEGER D_ILAT,D_LONG,LATS, LONS,OBSLOC(8)
INTEGER EL SIZ,EI REC,IM SIZ,IM REC
INTEGER IIAD,ILAM,ILAS,IIOD,TLCM, ILOS
INTEGER FLAD, FLAM, FLAS,FLOD, FLOM, FIOS

REAL*4 I_VECTOR
REAL*8 X1,Y1,21,X2,Y2,22,M(3,3)

72

REAL*8 FOCUS, XFRAME, YFRAME
REAL*8 HEIGHT,PWR,SCALE

C
C set up graphics enviromment
C

C create a color map with 25) entries

C
DATA VCM_SIZE/251/
VOM_ID=UISSCREATE_COLOR MAP(VCM _SIZE)
C
C make a virtual display 16.8 cm x 16.8 cn
C
VD_ID-UIS$CREATE DISPLAY(0.0,0.0,512.0,512.0,16.8,16.8,VOM ID)
(o4
C fill in the color map
C
DO 50 I=0,250
I_VECTOR=I/250.
CALL UISSSET INTENSITY(VD_ID,I,I_VECTOR)
50 CONTINUE
C
C set the backgrourd color and fill pattemn
C
CALL UISS$SET _INTENSITY (VD ID,0,0.0)
CALL UISSSET FONT(VD ID,1,1, UIS$FII.LPATI‘EWS)
CALL UISSSET FILL PATI'ERN(VD ID,1,1, PATTSC > FOREGROUND)
C
C start main routine, read input
C
CALL INPUT(ELFIIE,EL SIZ,EL REC,
. IMFILE,IM S1Z,IM REC,IIAD, ILAM,ILAS, 110D, I1OM, I10S,
. FIAD, FLAM, FIAS,F10D, FLOM, F1I0S, TITLE)
C
EL_REC=EIL, REC+1
M SIZ=IM SIZ/4
c

C open the input data files
C

OPEN (UNTT=1, FILE=ELFILE, STATUS="0LD' , ACCESS="'DIRECT" ,
. RECORDSIZE=EL SIZ,MAXREC=EL, REC)

OPEN (UNTT=4,, FTLE=IMFILE, STATUS="0LD' , ACCESS="DIRECT" ,
. RECORDSIZE=IM SIZ,MAXREC=IM REC)

CALL READ ELEV(ILATD,ILATM, ILATS, ILOND, ILONM, ILONS,
. D_IAT,D_LONG,RELEV, TENDN, IENIM)

CALL READ IMAGE(IMAGE,IM SIZ,IM REC)

CALL TER_XVYZ (ILATD, ILATM, TLATS, TLOND, TLONM, TLONS,

. D_IAT,D_LONG,RELEV, TENDM, IENDN, XYZ, IA,JA,

. I1AD, TLAM, TIAS, TLOD, ILCM, II0S,

. FLAD, FLAM, FIAS, FLOD, FLOM, FLOS, IM_SIZ, M _REC)

CALL IM REFAVG(IA,JA,IMAGE, IENDM, IENDN, PL._AR)

73

YFRAME=29000.0
XFRAME=35000.0
FI1E NAME=' '
SAVE_FLAG=0
FOCUS=.050
PR=1.0
SCALE=1.2
TTOT=IENDN*TENTM
WD_ID=UISS$SCREATE_WINDOW(VD_ID, 'SYS$WORKSTATION' , TITLE,
. 0.0,0.0,512.0,512.0,16.8,16.8)
C
C
60 CALL OBS_LOC(X1,Y1,Z1,X2,Y2,Z2,0BSLOC)
CALL M ORIEN(M,X1,Y1,21,X2,Y2,22)
CALL NEW 1J(X1,Y1,21,X2,Y2,72,ITOT,XYZ,FOCUS,M, IMAX,
. IMAY, HIDDEN, DEPTH)
70 CALL XY21J(IA,JA,IMAX,IMAY,XFRAME, YFRAME, ITOT, HIDDEN)
CALL HIDDEN SURF(IA,JA,TENIM, TENDN,DEPTH,PL AR,VD ID,
. HIDDEN,DEPTH KEY,WD_ID)
Cc
C type the observer location and memu
Cc
80 CALL CLRSCRN
WRITE(6, *) 'OBSERVER LOCATION'
WRITE(6,*)
WRITE(6,85) 'IAT: ',OBSLOC(1),0BSLOC(2),0BSLOC(3)
WRTTE (6,85) 'LONG: *,OBSLOC(4),0BSLOC(5) ,OBSLOC(6)
WRTTE (6,90) *HEIGHT: ‘',OBSLOC(7),' HEADING: ',OBSIOC(8)
WRITE(6,91) '"MAGNIFICATION: ',PWR,' YSCAIE: ',SCALE
85 FORMAT(A8,I4,I3,I3)
90 FORMAT (A9,17,A12,13)
91 FORMAT (A16,F4.1,A12,F4.1)

WRITE (6, *)

WRITE (6, *) 'SELECT ONE OF THE FOLLOWING'
WRITE(6,%) "' (M)agnification'
WRITE(6,*)' (Y)scale factor'
WRITE(6,*%)"' (O) bserver Location'
WRITE(6,%) ! (S)ave Image'
WRITE(6,*) ' (E)xit!

READ(5,100) ANS
100 FORMAT (A1)

C
IF (ANS .NE. 'M' .AND. ANS .NE. 'm') GO TO 105
WRITE(6,*) 'ENTER MAGNIFICATION FACTOR'
READ(5, *) PAR
102 XFRAME=35000.0/PWR
YFRAME=35000. 0/ (PWR*SCAILE)
GO TO 70
C

105 IF (ANS .NE. 'Y'.AND. ANS .NE. 'y') GO TO 110
WRITE(6, *) '"ENTER Y-SCALE FACTCOR!'

74

110

115

116
118

120

READ(5, *)SCALE
GO 70 102

IF (ANS .NE. 'O'.AND. ANS .NE. 'o') GO TO 115
GO TO 60

IF (ANS .NE. 'S' .AND. ANS .NE. 's') GO TO 118
IF (FILE_NAME .BQ. ' ') THEN
WRITE(6,*) 'ENTER THE NAME OF THE IMAGE FILE'
READ(5,116) FILE NAME
ENDIF
SAVE_FLAG=SAVE FIAG+1
CALL IMAGE_SAVE(WD_ID, FILE_NAME,SAVE FLAG)
GO TO 80
FORMAT (A13)
IF (ANS .NE. 'E'.AND. ANS .NE. 'e') GO TO 80

IF (SAVE FIAG .GT. 0) THEN
WRITE(11) SAVE FIAG

ENDIF

CLOSE (1)

CIOSE(4)

CLOSE (10, STATUS="'SAVE')

CLOSE(11,STATUS="'SAVE')

CALL UISSDELETE_DISPIAY (VD _ID)

CALL CLRSCRN

END

75

A

P

C
C dekdhkdhhkkhkhkhkhkkkkhkhkhkhkkhkihkdhkkhkhkkhhhkkhkhikhkhkihkhkhkkkkkkk
C

SUBROUTINE INPUT(ELFILE,EL SIZ,EL REC,IMFILE,

. IM_S1Z,IM REC,ILAD, ILAM, ILAS, ILOD, TLCM, I10S,
. FLAD, FIAM, F1IAS, FLOD, FLOM, F1OS, TITLE)

C
c INFUTS = EIFIIE elevation data file name
c EL SIZ # coclum of ELFILE
c EL REC # rows of ELFIIE
c IMFIIE image data file name
c IM S1Z # colums of IMFILE
o IM REC # rows of IMFILE
C IIAD, I1AM, I1AS
C II0D, IICM, TIOS Northwest corner of image file
C FLAD,FLAM, FIAS
c FLOD,FLOM,FIOS Southeast corner of image file
Cc NAME file name for the input data file
C TITLE header name for the image
C
C CUJTRUTS = NONE
C
C khkkkkhkkkhhkhkhkhkhhkhkhkkkhkhkhhkkkkhkkhkkkkkikkhkkhkhkhkhkkhhhkkkkkkkkkk
C

IMPLICIT INTEGER (A-Z)
C

CHARACTER ELFILE*13,IMFILE*13,TITLE*50,ANS*]1,NAME*13
C

INTEGER EL SIZ,EL REC,IM SIZ,IM REC
INTBGER ILAD,ILAM,TLAS,FIAD, FLAM,FIAS
INTEGER ILOD,ILOM,ILOS,FLOD, FLOM, FLOS

routine here

LMo NoNe)

CALL CIRSCRN

WRITE(6,*) 'Do you wish to create an input data file (Y/N)? !
READ(5,100) ANS

100 FORMAT (A1)

IF (ANS .EQ. 'Y' .OR. ANS .FQ. 'y') GO TO 200

IF (ANS .EQ. 'N' .OR. ANS .EQ. 'n') GO TO 500

GO TO 5
C
C create input file
C
200 CALL CILRSCRN
WRITE(6,*) 'Input the filename for the input file(*.dat): '
READ(5,205) NaME
OPEN (UNIT=1,NAME=NAME,STATUS='NEW',
. ACCESS="'SEQUENTIAL' , FORM="'FORMATTED')
C
C get elevation file data
C

76

- —— s

B RORRIRRRRRRRRREEERRSEE SRS R R A SR e

I

Cc

WRITE (6, *) 'Enter the elevation data file name: !
READ(5,205) ELFIIE

WRITE(6, *) 'Elevation file mmber of colums: '
READ(5,*) EL SIZ

WRITE(6,*) 'Elevation file mumber of rows: '
READ(5,*) EI,_REC

C get image file data

Cc

C

WRITE(6,*) 'Enter the image data file name: '
READ(5,205) IMFILE

WRITE(6,*) 'Image file mmber of colums: !
READ(5,*) IM_SIZ

WRITE(6,*) 'Image file mmber of rows: '
READ(5,*) IM_REC

C northwest corner of image latitude and longitude

C

C

WRITE(6,*) 'Enter the North-West lat/long of image'
WRITE(6,*) ‘Input the latitude (DEG,MIN,SEC): '
READ(S, *) I1IAD, ILAM, I1AS

WRITE(6, *) *Input the longitude (DBEG,MIN,SEC): '
READ(5, *) ILOD, I1L(M, I10S

C southeast corner of image latitude and longitude

c

C

WRITE(6, *) 'Enter the South-East lat/long of image'
WRITE(6,*) 'Input the latitude (DBEG,MIN,SEC): '

READ(5,*) FLAD,FLAM, FIAS

WRITE(6,*) 'Input the longitude (DEG,MIN,SEC): '
READ(S5,*) FLOD,FLM,FLOS

WRITE(6,*) 'Input a title for the image (50 char max.): !
READ(5,206) TITLE

C write data to data file

C

205
206
207
209

WRITE(1,205) ELFILE
WRITE(1,207) EL SIZ
WRITE(1,207) EL_REC
WRTTE(1,205) IMFILE
WRITE(1,207) IM SIZ
WRITE(1,207) IM REC
WRITE(1,209) ILAD,ILAM,IIAS
WRITE(1,210) ILOD,ILCM,ILOS
WRITE(1,209) FIAD,FLAM,FLAS
WRITE(1,210) FLOD, FLOM, FLOS
WRITE(1,206) TITLE

FORMAT (A13)
FORMAT (AS0)
FORMAT (I3)

FORMAT (313)

77

210 FORMAT (14,213)

i GO TO 600
Cc
C read an input file
C

500 CALL CIRSCRN
WRITE(6, *) 'Enter the name of the input data file: '
READ(5,205) NAME
OPEN (UNIT=1, NAME=NAME , STATUS="'0LD"',
. ACCESS='SEQUENTIAL', FORM='FORMATTED')
READ(1,205) ELFILE
READ(1,207) EL SIZ
READ(1,207) EL REC
READ(1,205) IMFILE
READ(1,207) IM SIZ
READ(1,207) IM REC
READ(1,209) IIAD,IIAM,IIAS
READ(1,210) ILOD,ILOM,IIOS
READ(1,209) FLAD, FLAM, FLAS
READ(1,210) FLOD,FLOM,FIOS
READ(1,206) TITLE

c

600 CLOSE (UNIT=1)
RETURN
END

78

C dedededede e dedededo de o Je Je do Je oo do de de d e 9 e o de e e e e de e e T o e e de de e v e vde e e g e e e s d o e e dede dede ke ke ek ok ek ke ok

SUBROUTINE READ ELEV(ILATD,ILATM, ILATS, ILOND, ILONM, ILONS,

. D_IAT,D LONG,RELEV, IENIN, IENIM)
C
C THIS SUBROUTINE READS THE EIEVATION FIIE AND PIACES THE DATA
C INTO A REAL 50X50 ARRAY REIEV().
(o INPUTS = NONE
C
C OUTRUT = IIATD southwest latitude of elev data (degrees)
C IIATM southwest latitude of elev data (minutes)
c IIATS southwest latitude of elev data (seconds)
C IIOND southwest longitude of elev data (degrees)
C IIONM southwest longitude of elev data (minutes)
c IIONS southwest longitude of elev data (secorxs)
c D IAT grid size in mimutes of latitude
c D IONG grid size in minutes of longitude
C RELEV() elev data
c IENIM # rows of elev data
c IENIN # colums of elev data
C
C *kkkkhhhkhhkhkhkhkkkkhkkhkhkhkhkhkhkhkhkhkhhkhkkkhkhhkkdkhkkhhkhhhkhkhkhhkkhkkhkkhkkkhkkhkkk
IMPLICIT INTEGER (A-Z)
C
COMMON /ELEV/ROW_ELEV, COL_ELEV
INTEGER IENDN,IENIM,D IAT,D LONG
INTEGER IIATD,ILATM, IIATS, TLOND, ITONM, ILONS
C
REAL REIEV(ROW ELEV,OOL_ELEV)
C
READ(1,REC=1) ITATD, ILATM, ILATS, TLOND, TLONM, ILONS,
D_IAT,D LONG, TENDN, TENDM
C
DO 10 M=1,IENIM
READ(1,RECEM+]) (RELEV (M, N) ,N=1, TENIN)
10
RETURN
END

79

fkkhkikhkhkhkkkhhhkhhhkhkhkhhhkhhkhkhhihkhhkhkkkhkkhhkkrkkrkhkhkhkhhk
SUBROUTINE READ IMAGE (IMAGE,IM SIZ,IM REC)

C
C
C
C
C THIS SUBROUTINE READS THE IMAGE DATA INTO AN ARRAY.
Cc INFUTS = M SIZ mmber of columns of image
C
C
C
C
C*

IM REC number of rows of image
OUTRUT = IMAGE() image gray level file
*****************_**

IMPLICIT INTEGER (A-Z)
COMION /IMAGE/ROW_IMAGE, OOL,_IMAGE

c
BYTE IMAGE(ROW IMAGE,COL IMAGE)
c
INTEGER IM SIZ,IM REC
c

DO 10 IR=1,IM REC

READ(4,REC=IR) (IMAGE(IR, IC) ,IC=1,IM SIZ*4)
10 CONTINUE

RETURN

END

80

Ahkkkkhhihkhhkhhhkhhhkhhhkhhihkhhhkikhikkhkkikhhhkkhkkhhhhkhkhkhhkhhkhkihkkkikkkk

0o

SUBROUTINE TER_XYZ (LATD, LATM, LATS, ILOND, LONM, LONS,
. D_IAT,D_LONG,RELEV, IENIM, TENDN, XYZ, IA,JA,
. TIAD, TLAM, ILAS, TIOD, ILOM, TIOS,
. FIAD, FLAM, FIAS, FLOD, FLOM, F10S, IM_SIZ,IM REC)

THIS SUBROUTINE OCONVERTS EACH EILEVATION POINT TO ITS DMS
BEQUIVALENT. IT USES THE FACT THAT EACH POINT REPRESENTS
AN BQUAL CHANGE FRM THE IAST. THE REFERENCE IAT/LONG

AND THE DELTA IAT/IONG ARE PASSED IN THE SUBROUTINE CALL.

.+ ASSUMES COLOR CCMPLETELY OVERIAPS THE ELEV DATA
.+ .NEED TO KNOW THE IAT/IONG OF THE OOIOR IMAGE
.. .ALSO CAICS THE IA(), JA() OOORDINATES FOR EACH EIEV PT

ETEVATION DATA

INPUTS IATD - REFERENCE IATTTUDE (DEGREES)
IATM ~ REFERENCE IATTTUDE (MINUTES)
IATS ~ REFERENCE IATTTUDE (SECONDS)
IIOND - REFERENCE LONGITUDE (DEGREES)
IO ~ REFERENCE LONGITUDE (MINUTES)
IONS ~ REFERENCE IONGITUDE (SECONDS)
D _IAT - DISTANCE BETWEEN ROWS
D _IONG - DISTANCE BETWEEN OOILIMNS
RELEV() - ELEVATION DATA FILE
IENDM - NUMBER OF ROWS
IENDN - NUMBER OF COLIMNS

OUTPUTS XYZ - OUTPUT DATA FILE

aNO0OONOO0O00NNONONNON0N0O00O0N00

T T T s L Y T T
IMPLICIT INTEGER (A-Z)
OOMMON /ELEV/ ROW_EIEV,CO0L ELEV,TOT_ELEV

C
INTEGER IA(TOT EIEV),JA(TOT_ELEV)
INTEGER IATD,IATM, IATS,ILOND,IIONM,D IAT,D IONG
INTEGER LOND, LONM, LONS
INTEGER I1AD,I1AM,IIAS,IIOD,ILOM,IIOS
INTEGER FIAD, FLAM, FIAS, FLOD, FLOM, FLOS
INTEGER IM S1Z,IM REC

C
REAL RELEV(ROW_ELEV,QOL_EILEV)
REAL*3 HEIGHT,X,Y,Z,XYZ(TOT_FIEV,3)

C

C convert to seconds

C

CALL OONV2SEC(ILAD, ITAM, ILAS)
CALL OONV2SEC(ILOD, ILOM, ILOS)
CALL CONV2SEC(FLAD, F1AM, FLAS)
CALL OONV2SEC(FLOD, FLOM, FLOS)

81

P

DEILIAT=ITIAS-FIAS
DELLON=FLOS-ILOS

c
C set flag for proper hemisphere
C
IF (ILAD .GE. 0) THEN
IAT FLAG=1
ELSE
IAT FIAG=1
ENDIF
IF (IIOD .GE. 0) THEN
LON_FIAG=1
EISE
LON FLAG=1
ENDIF
c
C find initial seconds of elev. data
C
CALL QONV2SEC(LATD,IATM,IATS)
CALL QONV2SEC(ILOND,LONM,LONS)
C
C set up for ist increment
C
LATS=IATS-D _IAT
ITONS=LONS-D LONG
C
C start routine here
C
IR=0
DO 10 M=1i,IENIM
LATS=LATS+D _IAT
LONS=ITONS
DO 20 N=1,IENIN
IR=IR+1
LONS=LONS+D_LONG
HEIGHT=RELEV (M,N)
ROW=INT((IM_REC-1) *(ILAS-1ATS)/DELLAT)+1
COL=INT(((IM_SIZ*4)-1)* (LONS-ILOS)/DELLON) +1
C
C the row ard column coordinates are 1-512
cC
IA(IR)=COL
JA(IR)=ROW
CALL IMS2XYZ (0,0,IATS,0,0,LONS,HEIGHT, X, Y, 2)
XYZ (IR, 1)=X
XYZ (IR, 2)=Y
XYZ (IR, 3)=2
20 CONTINUE
10 CONTINUE
RETURN

END

82

JeJ e Je Je e Fe e Je Jode e e Je de e e e o de de e e e e e e e e de e g e e de e e e e g e e e I do de ok e T de e K I de de ok e e g de de ok ok ok k ke ok
SUBRCUTINE MS2XYZ (LATD, LATM, LATS, LOND, LONM, IONS, HEIGHT, X, Y, Z)
THIS SUBROUTINE COONVERTS IMS DATA TO X,Y,Z2.
INPUTS = IATD latitude in degrees
IAT™ latitude in mimites
IATS latitude in seconds
LOND longitude in degrees
LONM langitude in mimites
IONS langitude in secands
HEIGHT height above sea level (meters)

OUTFUT = X,Y,Z XYZ coordinates of IMS point

L T L s 2
IMPLICIT INTEGER (A-2)

INTEGER IATD,IATM, IATS,IOND, LONM, LONS

O 0O 000N 0ONNNNNONO00 000

REAL#8 PHI,IAMDA,N,X,Y,Z,HEIGHT
REAL*8 PI,C1,C2,C3,E SQUARE,A,RADIAN

PARAMETER (PI=3.14159265358793238)
PARAMETER (C1=180. ,C2=60.,C3=3600.)
PARAMETER (E_SCQUARE=0.006768658 ,A=6378206.4)

RADIAN=PI/C1

IF (IATD .GE. 0) THEN
PHI=(ILATDHLATM/C2+1ATS/C3) *RADIAN
EISE
PHI=(LATD~IATM/C2-LATS/C3) *RADIAN
END IF

IF (LOND .GE. 0) THEN

LAMDA= (LOND+LONM/C2+I0NS/C3) *RADIAN
EISE

ILAMDA=(LOND-LONM/C2-LONS/C3) *RADIAN
END IF

N=A/SORT (1-E_SQUARE*SIN (PHI) *SIN (PHI))
X=(N+HETGHT) *C0S (PHI) *COS (LAMDA)

Y= (N+HEIGHT') *00S (PHI) *SIN (LAMDA)
2=(N*(1~E_SQUARE)+HEIGHT) *SIN(PHI)
RETURN

END

_‘-

83

T e T T I T I T P
SUBROUTINE IM REFAVG(IA,JA,IMAGE, TENDM, IENDN, PL. AR)

THIS SUBROUTINE OONSTRUCTS THE GEOMETRY FILE
THAT OONTAINS THE THREE NODAL POINTS THAT MAKE UP
AN IMAGE PIANE AND THE GREY SCAILE VALUE ASSIGNED TO
THAT PLANE.
INPUTS = IMAGE() image gray level file
TENIM # rows of elev data
TENIN # colums of elev data
IA() image column index
JA() image row index

OUTRUT= PL AR() array holding nodes and
gray value for each panel

Jo e e e e e Je e Je e e de e Je e e Fe e de e e e e e e e e e J e g e e Je e e Je e de Je Ko de o ke e do e de e ke de e ke ke ke

IMPLICIT INTEGER (A-2Z)

O 00000 NNOONO0O00O00 OQO

COMMON /ELEV/ROW_ELEV, QOL,_ELEV,TOT_ELEV,NPLANES
QOMON /IMAGE/ROW_IMAGE , OOL,_IMAGE

BYTE IMAGE (ROW_IMAGE, OOL_IMAGE)

INTEGER IY,M,N,IGREY1,IGREY2,L,11
INTBGER IENTM, TENDN, NODE_A, NODE_B, NODE_C, NODE_D, IR
INTEGER ICOUNT1,ICOUNT2,TTOT1, TTOT2

INTEGER TA(TOT EIEV) ,JA(TOT EIEV), PI,_ AR(NPIANES,5)

REAL*8 SIOPE,YINT)

DO 90 IR=1,IENIM-1
II~=(IR~-1) *IENDN
DO 80 N=1+IL,IENDN-1+I1L
NODE_A=N
NODE B=N+1)
NODE _C=N+TENIN
NODE | , D=NODE_C+1
SLOPE=(JA (NODE_C) -JA(NODE_B)) *1.0/ (IA (NODE_C)-IA(NODE B))*1.0
YINT=1.0*JA(NODE_B)-SIOPE*IA (NODE B)
C
C now know the slope and y-intecept of the line forming the triangle
C
ITOT1=0
ITOT2=0
IQOUNT1=0
TOQOUNT2=0
DO 70 M=IA(NODE B),IA(NODE A),-1)
TY=SIOPE*M+YINT

84

DO 50 I~JA(NODE_B),IY,-1
IF (IMAGE(L,M) .LT. 0) THEN
TTOT1=TTOT1+IMAGE (L, M) +256
r ELSE
TTOT1=TTOT1+IMAGE (L, M)
END IF
TCOUNT1=ICOUNT1+1
50 CONTINUE
IF (M. LT. IA (NODE_B)) THEN
DO 60 L=IY,JA(NODE C),-1
IF (IMAGE(L,M) .LT. 0) THEN
TTOT2=TTOT2+IMAGE (L, M) +256
ELSE
TTOT2=ITOT2+IMAGE (L, M)
END IF
TCOUNT2=ICOUNT2+1
60 CONTINUE
END IF
70 CONTINUE
L1=(N-(IR-1)) *2
IGREY1=TTOT1/ICOUNT1
IGREY2=TTOT2/ICOUNT2
PL_AR(L1-1,1)=NODE A
PL_AR(L1-1,2)=NODE B
PL_AR(L1-1,3)=NODE C
PL_AR(L1-1,4)=IGREY1
PL_AR(L1,1)=NODE B
PL,_AR(L1,2)=NODE_D
PL_AR(IL1,3)=NODE_C
PL_AR(L1,4)=IGREY2

80 CONTINUE

20 CONTINUE
RETURN
END

85

B A T 2T
SUBROUTINE OBS_I0OC(X1,Y1,21,X2,Y2,Z2,0BSLOC)

THIS SUBROUTINE CALCUIATES THE NEW OBSERVER XYZ
LOCATION FRCM DESIRED IAT. AND IONG. INPUTS.

INFUTS = NONE

oUTRUTS = X1,Y1,Z1 cbserver location
X2,Y2,22 cbserver location direction
OBSLOC() cbserver location array

dkkkhkhkhkkhhhhhkhkkhkhkhhkhkkhkhkhkhkkhhhhhkhkhhhkhkhhkhhhhhhhdkhhhk
IMPLICIT INTEGER (A-Z)

CHARACTER ANS*1

O N0 000NN oO0O0On0n 000

INTEGER LATD,IATM, IATS, IOND,IONM,LONS,CIS
INTEGER OBSLOC(8)

REAI*8 X1,Y1,2Z1,X2,Y2,22,HEIGHT

read in last values of cbserver location

noao 0

IATD=OBSLOC(1)
LATM=OBSIOC(2)
LATS=0BSIOC(3)
LOND=OBSLOC (4)
LONM=OBSIOC(5)
LONS=OBSLOC(6)
HEIGHT=OBSLOC(7)
CTS=0BSLOC(8)

FIAG=0
1 CALL CIRSCRN
WRITE(6, *) "OBSERVER LOCATION'
WRITE(6, *)
WRITE(6,8) 'LAT: ',OBSLOC(1),0BSIOC(2),0BSIOC(3)
WRITE(6,%) 'LONG: ',OBSIOC(4),0BSLOC(5) ,OBSLOC(6)
WRITE(6,9) "HETGHT: ',OBSIOC(7),' HEADING: ',OBSIOC(8)
8 FORMAT (A8,14,13,13)
9 FORMAT (A9,17,A12,13)
WRITE(6, *)
IF (FIAG .EQ. 1) THEN
WRITE(6,*' *ARE THERE ANY CORRECTIONS'

WRITE (6, *)

ENDIF

WRITE (6,*) 'SELECT ONE OF THE FOLLOWING'
WRITE (6, *) ' (1) Iatitude'
WRITE(6, *) ' (2) Longitude'
WRITE(6, *) * (3) Height'

86

WRITE(6,%)* (4) Heading'

WRITE(6,%) "' (5) A1l
WRITE(6, *) * (6) None'
C
READ(5,100) ANS
100 FORMAT (Al)
IF (ANS .BQ. '6') GO TO 160
C
IF (ANS .NE. '1' .AND. ANS .NE. '5') GO TO 60
_ WRITE(6,*) 'INFUT OBSERVER IATTTUDE -~DBEGREES: '
READ(5, *) IATD
WRITE(6,%*)' ~MINUTES: '
READ(S, *) LATM
WRITE(6, *) * ~SECONDS: !
h READ(5, *) LATS
C
60 IF (ANS .NE. '2'.AND. ANS .NE. '5') GO TO 70
WRITE (6, %) 'INFUT OBSERVER LONGTTUDE -DEGREES: '
READ(5, *) LOND
WRITE(6,*) ' -MINUTES: '
READ(5, *) LONM
WRITE(6,%*) ' ~SEQONDS: !
READ(5, *) LONS
C
70 IF (ANS .NE. '3'.AND. ANS .NE. '5') GO TO 80
WRITE(6,*) ' INPFUT OBSERVER HEIGHT -METERS:
READ(5, *) HEIGHT
c
80 IF (ANS .NE. '4' .AND. ANS .NE. '5') GO TO 105
WRITE(6,*) 'INPUT THE COURSE DEGREES: !
READ(5, *) CTS
105 IF (ANS .IT. '1' .OR. ANS .GT. '6') GO TO 1
C
C load the values into the obs_loc array
C

150 OBSILOC(1)=IATD
OBSIOC(2)=IATM
OBSLOC(3)=IATS
OBSLOC (4) =LOND
OBSLOC(5) =LONM
OBSLOC(6)=LONS

OBSLOC(7)=HEIGHT
OBSLOC(8)=CTS
FIAG=1
GOTO 1
C
C convert to XYZ coordinates
C
160 CALL DMS2XYZ (ILATD,LATM,IATS, LOND, LONM, LONS, HEIGHT, X1,Y1,21)
C
C calc new position based on course
C

87

r 198

c

IF (LATD .GT. 0) THEN
LATS=5+*C0S (2*3.14159*CTS/360) +1ATS
ELSE
LATS=IATS-5*SIN(2#*3. 14159*CTS/360)
END IF

IF (LOND .GT. O) THEN
LONS=5*SIN(2*3.14159*CTS/360)+LONS
ELSE
LONS=IONS-5*SIN (2*3.14159*CTS/360)
END IF

C canvert new position to XYZ coordinates

C

CALL DMS2XYZ (IATD, LATM, LATS, LOND, LONM, LONS, HEIGHT , X2, Y2, 22)
RETURN
END

88

4

o

C o e Jo Je de Je o e T de e e o I de e e e K e Fe de e K et g e e de e K K ke g T e e e e de o 3 de g e e 3 ok e e e ke ok
k SUBROUTINE M _ORTEN(M,X1,Y1,21,X2,Y2,22)
THIS ROUTINE DETERMINES THE ANGLES OF ROTATION
OF THE IMAGE PIANE WITH RESPECT TO THE WORLD COORDINATE AXIES.
AND CAILCULATES THE NEW M MATRIX FOR THE NEW VIEWER LOCATION

INFUTS = X1,Y1,21 cbserver location
X2,Y2,22 cbserver direction point

QUTRUTS = M() 3D - 2D xform matrix

T T LT L L d R L T s
IMPLICIT INTEGER (A-Z)

QO O0N0ONOO0OO00O0

REAI#8 MAGN X,MAGN Y,MAGN Z
REAL*SXVECXXVEC’YXVEQYVED(YVECYYVB;‘Z
REAL*BZVECXZVEEYZVE@XlYlZl)QYZZZ

REAL*8 M(3,3)
C
C get the two OBS IOC points
C ard set up vectors
C
Y VECX=X1
Y VECY=Y1
Y VBECZ=21
04
C select another point along the track
C
Z_VECX=X1-X2
Z_VECY=Y1-Y2
7_VECZ=21-Z2
C
C use the cross product of Y CROSS Z to obtain the X vector
C

X_VECX=((Y_VECY*Z_VBCZ)-(Y_VBECZ*Z_VECY))
X_VECY=((Y_VECZ*Z_VECX) - (Y_VECX*Z_VECZ))
X_VECZ=((Y_VBECX*Z_VECY) -(Y_VECY*Z_VECX))
MAGN_Z=SQRT ((2_VECX**2)+(Z_VECY**2)+(Z_VECZ**2))
MAGN_X=SORT ((X_VECX**2)+(X_VECY**2)+(X_VECZ**2))
MAGN Y=SORT((Y_VBCX**2)+(Y_VECY*#2)+(Y_VECZ**2))
M(1,1)=X VBCX/MAGN X

M(1,2)=X_VECY/MAGN X

M(1,3)=X VECZ/MAGN X

M(2,1)=Y_VECX/MAGN Y

M(2,2)=Y VECY/MAGN Y

M(2,3)=Y_VECZ/MAGN Y

M(3,1)=Z_VECX/MAGN Z

M(3,2)=Z_VECY/MAGN 2

M(3,3)=2Z_ViCZ/MAGN 2

RETURK

END

89

C
C Jededodededodede e dodedo g e de dedo Jede Jo e e e e e e de e e o e e de e ok o de e e de e e d e de e e de sk e o e de kv e e dede ek Kk
C
. SUBROUTINE NEW_1J(X1,Y1,21,X2,Y2,22,TTOT,
. XYZ ,FOCUS ,M, IMAX, IMAY , HIDDEN , DEPTH)
C
C THIS SUBROUTINE CCMPUTES THE NEW IA AND JA SCREEN
C COORDINATES FROM THE GIVEN OBSERVER LOCATION.
C
c INFUTS = X1,Y1,Z1 abserver location
Cc X2,Y2,22 cbserver direction point
C ITOT # elev points
c M() 3d - 2d xform matrix
o FOCUS focal length
Cc XYZ() dms coordinates of elev data
C
c OUTPUTS = IMAX() X image coordinate
c IMAY () y image coordinate
o HIDDEN() flag for points hidden behind FOV
C DEPTH () depth of each point
Cc
C kkkkhkhkdhhkhkhkhkhkkkihkhhkhkhkkhkhhkhkhkhkhhkkhkdhhhhhhikikikikkhkihkkkhkikkikkkkkk
IMPLICIT INTEGER (A-Z)
C
OOMMON /ELEV/ ROW_ELEV, 0L ELEV, TOT ELEV
C
INTEGER ITOT, IR,HIDDEN(TOT EIEV)
C

REAL*8 X1,Y1,Z1,FOCUS,M(3,3)

REAL*8 X,Y,Z,XIMA, YIMA, DENCM, DEPTH (TOT_EIEV)

REAL#*8 XYZ(TOT_ELEV,3) ,IMAX(TOT_ELEV) , IMAY (TOT_ELEV)
REAL*8 X2,Y2,22,0BS_VECX,OBS_VECY,OBS_VECZ

REAL*8 OBJ_VECX,OBJ VECY,OBJ VECZ,MAG OBS,MAG ORJ
REAL*8 COS_THETA, VAILE

C
VAILUE=90.0
VALUE=COS (VALUE/57.29577951)
C
[0 20 IR=1,ITOT
X=XYZ(IR,1)
Y=XYZ (IR, 2)
Z=XYZ (IR, 3)
c
C calc the odbs_vec
C
OBS_VECX=X2-X1
OBS_VECY=Y2-Y1
OBS_VECZ=22-71
MAG OBS=SQRT (OBS_VECX**2+OBS VECY#**2+OBS_VECZ**2)
C
C calc the obj_vec
o

90

X

OBJ_VECX=X-X2
OBJ_VECY=Y-Y2
OBJ_VECZ=Z-22
MAG_OBJ=SQRT (OBJ_VECX#*#2+0BJ_VECY**2+0BJ_VECZ**2)

calc cos theta, where theta is angle between line of sight
ard abject point.

s NeNoN®)

COS_THETA=OBS_VECX*OBJ_VECX+OBS_VECY*ORJ_VECY+OBS_VECZ*OBJ_VECZ
00S_THETA=COS_THETA/ (MAG_OBS*MAG_OBYJ)

C
C now check if Q0S(theta) > 0 => angle < 90 degrees
p .
IF (COS_THETA .GT. VALUE) THEN
DENCM=M (3, 1) * (X-X1)+M(3,2) *(Y-Y1)+M(3,3) *(2-Z1)
XIMA=—FOCUS* (M(1, 1) * (X-X1)+M(1,2) * (Y-Y1)+M(1,3) * (2-21)) /DENCM
YIMA=—FOCUS* (M(2, 1) * (X-X1)+M(2,2) *(Y-Y1)+M(2,3) *(2-21)) /DENOM
XIMA=XIMA*1000000.0
YIMA=YIMA*1000000.0
C

C save xima, yima in IMAX(), IMAY() array temporarily
C
IMAX (TR) =XIMA
IMAY (IR)=YIMA
DEPTH (IR) =SQRT (((X1-X) **2)+((Y1-Y) **2)+((Z1-2) **2))
HIDDEN (IR)=0
EISE
HIDDEN (IR) =1
END IF
20 QONTINUE
RETURN
END

91

Fod

c

C Fededodedodededdededededede de de o de o de e de e de e g e de e de de g e gk g e e e gk e e I e de e e g e e v sk de e e ok e vk e v o e ok ok ok

c .
SUBROUTINE XY2LJ(IA,JA,

. TMAX, IMAY , XFRAME,, YFRAME,, TTOT , HIDDEN)

THIS SUEROUTINE TAKES THE IMAGE POINTS XIMA,YIMA AND
QONVERTS THEM TO I,J SCREEN POINTS
THIS IS THE AFFIN XFORM — SEE REF 3

INFUTS = IMAX() X image coordinate
IMAY() y image coordinate
XFRAME image coordinate x axis size
YFRAME image coordinate y axis size
IToT number of elev points
HIDDEN() hidden point flag

OUTPUTS = IA() screen x coordinate
JA() screen y coordinate

Rkkdkkddihhkhhhkthhhihihididikkddiikhhidikkdhidiihkhdiddkihhikhkkikkkk
IMPLICIT INTEGER (A-2Z)

OCOMMON /ELEV/ ROW_ELEV,OOL_EIEV,TOT _ELEV

INTEGER IA(TOT_ELEV) ,JA(TOT_ELEV) ,HIDDEN(TOT ELEV) , ITOT

0O 0O 0O 0000000000000 000

REAL*8 XIMA,YIMA,Al,A2,B1,B2,Cl,C2, DENCM
REAL*8 IMAX(TOT_ELEV) , IMAY(TOT_ELEV) ,XFRAME, YFRAME

DATA I_MAX,J_MAX/512.0,512.0/
calc the affin parameters

A1=XFRAME/ (I_MAX*1.0)
A2=0.0

B1=0.0

B2=YFRAME/ (J_MAX*1.0)
C1=-XFRAME/2. 0
C2=YFRAME/2.0

DO 25 IR=1,TTOT
IF (HIDDEN(IR) .EQ. 1) GO TO 25
XIMA=TMAX (IR)
YIMA=IMAY (IR)
IA (IK) = (XIMA-C1) /A1
JA(IR) = (YIMA-C2) /B2
25 CONTINUE
RETURN
END

oNoNo NN

92

o

]
2

T

r‘.v<

C
C *kkkhkhkhhkhkhkhkhhhhhhhkhkhkhkhkkhkkhhkhkhkkkhhhkhkhhkhkkkkhkhkkkhkhhhhkhkhhd
C

SUBROUTINE HIDDEN SURF(IA JA, TENIM, TENDN, DEPTH,

. PL_AR,VD_ID,HIDDEN,DEPTH_KEY,WD ID)

C
C THIS ROUTINE WILL CHECK EACH PANEL AGAINST ALl
C OTHERS FOR OVERLAP.
c INFUTS => IA()
c JA()
C IENDN
c TENIM
c HIDDEN() flag for points hidden behind FOv
C
C OUTPUTS = NONE
C kkkhkkhhhhhhhhkhhhhhhhhhhhhhhhhhhkhkhhhhkhhkdkidkidkidd: kidikidkidkidikdkkik
C

IMPLICIT INTEGER (A--Z)
C

OCOMMON /ELEV/ ROW_ELEV,OO0L _ELEV, TOT ELEV,NPLANES
C

INTEGER IGREY,NODE_A,NODE B,NODE C

INTEGER IENDN,IENIM,IR,I,J
MMM(MELEV) PL_AR(NPLANES, 5)
INTEGER IA(TOT_ELEV) ,JA(TOT_ELEV),DEPIH KEY (NPLANES)

INTEGER X1,Y1,X2,Y2,X3,Y3
REAL*8 DEPTH(TOT_ELEV)

IOGICAL SORTED, PLUS,MINUS

calculate the mmber of planes

non o0

IPLANES=((IENIM-1) *2) * (TENDN-1)
QOUNT=0
C
C read in the data for each plane
C
DO 100 IR=1,IPILANES
PTA=PL _AR(IR,1)
PTB=PL _AR(IR,2)
PIC=PL _AR(IR, 3)
IF (HIDDEN(PTA) .PQ. 1 .OR. HIDDEN(PTB) .BQ. 1 .OR. HIDDEN(PIC)
. .EQ. 1) THEN
GO TO 100
ELSE
OOUNT=COUNT+1
DEPTI]_KEY (COUNT)=IR
ENDIF
100 COONTINUE
Cc
C sort depth values

93

DO 105 L=1, IPIANES
TR=DEPTH_KEY (L)
PL_AR(IR, 5)=MAX(DEPTH(PL_AR(IR,1)),
. DEPTH(PL AR(IR,2)),DEPTH(PL_AR(IR,3)))
105 CONTINUE

c

CALL QUICKSORT (PL_AR, IPLANES, DEPTH_KEY)
c

CALL UISDCSERASF (WD_TD)
c

C now begin selection

C

109 DO 110 K=IPIANES,1,-1
IR-DEPTH_KEY (K)

Cc
C draw to virtual display
(o4
NODE_A=PL AR(IR,1)
NODE_B=PL_AR(IR,2)
NODE_C=PL AR(IR, 3)
IGREY=PL AR(IR,4)
C

C limit the gray scale to 250 shades of gray
C vice 256 shades
C
IF (IGREY .EQ. 0) IGREY=1
IF (IGREY .GT. 250) IGREY=250
X1=IA (NODE A)
Y1=JA (NODE_A)
X2=IA (NODE_B)
Y2=JA(NODE_B)
X3=IA (NODE_C)
Y3=JA (NODE_C)
CALL UIS$SET WRITING INDEX(VD_ID,1,1,IGREY)
CALL UISIXSPI.UI‘(WD ID,1,X1,Y1,X3,¥3,X2,Y2)

110 CONTINUE

RETURN
END

94

e

naanNoOOONOnN 000

NN 0OON0 000

dededode & K e deTode e ek de ke dode e e de ke ke dede dede ke ke ke ok ke ke h ok k& ok ek ok ke k k&
SUBROUTINE CIRSCRN
This routine clears the screen
Inputs = NONE
Outputs = NONE

Rhkkkkhhkhkhhhhhhhkhhhkhhhkhkhkhkhhkhkhkhkhhhihd
IMPLICIT INTEGER (A-Z)
CALL SMGSCREATE PASTEBOARD(PB_ID)
CALI, SMGSERASE PASTEBOARD(PB_ID)
RETURN
END

khkkhhkhkhhkhkhhhkhkkhkhhkkhkkhkhkhkkkhhkhkkkhkhhdkhkkhkkhkkkhhkik

SUBROUTINE QONV2SEC(DEG,MIN, SEC)

INFUTS = DEG
MIN
SEC
QUTPUTS= SEC

kdkkhkhkkkhhkhhhhkhhhkhhhhkkhkkhkkkhhhkhkhkikkhhhhhkhkkhdhhhikdkkk
IMPLICIT INTBGER (A-Z)
IF (DEG .GE. 0) THEN
SEC=SECHMIN*60+DBG*3600
EISE
SEC=DEG*3600-MIN*60-SEC
ENDIF
RETURN
END

95

B T g]
SUBROUTINE QUICKSORT (ARRAY , COUNT, KEY)

INIUT = ARRAY() array to sort, sort on S5th field
KEY () key index to main array
OOUNT mmber of elements to sort
OUTPUT= KEY() new key index to main array

Fededede Jede e v de de de e de oo de do o de de e de de o de de e dedede e de g e de de do e de de Ko vk de ke K de ke ek de e e

IMPLICIT INTEGER (A-2)

N 000000000 a0

COMMON/ELEV/NN, MM, TOT, NPLANES
INTEGER ST(100,2)

INTBGER OOUNT, KEY (NPLANES)
INTEGER ARRAY (NPIANES, 5)

SP=1
ST(1,1)=1
ST(1,2)=COUNT
DO WHILE (SP .NE. 0)
L~ST(SP,1)
R=ST(SP, 2)
SP=SP-1
DO WHILE (R .GT. L)
LI=L
RI=R
INDEX=INT((L+R) /2)
SA=ARRAY (KEY (INDEX) , 5)
DO WHIIE (LI .LE. RI)
DO WHILE (ARRAY(KEY(LI),5) .LT. SA)
LI=LI+1
END DO
DO WHILE (ARRAY(KEY(RI),5) .GT. SA)
RI=RI-1
END DO
IF (LI .IE. RI) THEN
TEMP=KEY (LI)
KEY (LI)=KEY (RI)
KEY (RT) =TEMP
LI=LI+1
RI=RI-1
ENDIF
END DO
IF ((R-LI) .GT. (RI-L)) THEN
IF (L .IT. RI) THEN
SP=SP+1
ST(SP,1)=L
ST(SP, 2)=RI
ENDIF

L=LI
EISE
IF (LI .IT. R) THEN
SP=SP+1
ST(SP,1)=LI
ST(SP,2)=R
ENDIF
R=RI
ENDIF
END DO
END DO
RETURN
END

97

.4

_j™

-

b ' ChhkddondedeRdodedededededededodedododdodddeddodeded s dd ik doddekkkdkddkkkik
C
L SUBROUTINE IMAGE SAVE(WD_ID,FILE NAME,FLAG)
C
Chhhkhhhkkhkhhkhhkhhkhkkkhhhkhhkhhkhhkhkkhkkkkhkkkhkkkkhkikhkhkkkii
C
IMPLICIT INTEGER(A-Z)
C
CHARACTER FILE NAME*(*) ,NAME1*23 ,NAME2*23
C
INTEGER WD _ID,FLAG
C
DATA RETLEN/O/
DATA RWIDIH/O/
DATA RHEIGHT/O/
DATA BPPIXEL/O/
C
C determine the size of the image buffer
C
CALL UISDCSREAD IMAGE (WD ID,0,0,512,512, RWIDIH, RHEIGHT , BPPIXEL,
ud . ENCODED1, 0)
Cc
RETLEN=FRWIDTH*RHEIGHT
Cc
C open the external files
C
IF (FIAG .BEQ. 1) THEN
Cl=INDEX(FILE NAME,'.'
IF (C1 .BEQ. O) THEN
C2=INDEX(FILE NAME,' ')
NAME1=FILE NAME(1:C2-1)//'.SIZ'
NAME2=FILE NAME(1:C2-1)//'.IMG'
EISE
NAME1=FIIE NAME(1:C1-1) // '.SIZ'
NAME2=FILE NAME
ENDIF
WRITE(6, *)NAME] , NAME2
OPEN (UNIT=11, FILE=NAME1 , STATUS='NEW',

. ACCESS="'SBQUENTTAL' , FORM="'UNFORMATTED')
C
OPEN (UNIT=10, FILE=NAME2 , STATUS="'NEW',
. FORM="UNFORMATTED')
WRITE (11) RWIDTH, RHEIGHT , BPPTXEL, RETLEN
C
C allocate virtual memory for the buffer
C
STATUS=LIBSGET VM(RETLEN, ENCODED)
IF (.NOT. STATUS) CALL LIBSSTOP(%VAL(STATUS))
ENDIF
C
C extract and store private data in buffer

98

0

O 000

N0 0 0 o000 000

CALL UISDCSREAD IMAGE(WD_ID,0,0,512,512, RWIDTH, RHEIGHT, BPPIXEL,
. VAL (ENOODED) , RETLEN)

call subroutine to write the contents of the buffer
CALL BUFFERWRITE ($VAL(ENCODED) ,RETLEN, 10)

RETURN
END

kAR RRRRRARARRAFRhkhkkkkhkhkhkhkkhkhkhkhkkhkkkikikkhkk
SUBROUTINE BUFFERWRITE (BUFFER, LENGTH, LUN)
hkkkhhkkkhkhkhhhkkhkkikhhkhkhkkkhhkhkhhkhhkkkhkhkhkhkkhkhkhhkkhkk
IMPLICIT INTEGER(A-Z)
BYTE BUFFER (LENGTH)
WRITE (IDN)BUFFER

RETURN
END

99

|®

Ml

LIST OF REFERENCES

Furness, Thomas A., "Fantastic Voyage", Popular
Mechanics, v. 163, #12, Dec. 1986.

Coleman, Leland G., Three-Dimensional Image
Generatjon From an Aerjal Photograph, Thesis,

Naval Postgraduate School, Monterey, California,
Sep. 1987.

Naval Postgraduate School Report NPS52-87-034,

nexpensive Real-Time iv ee-
Dimensiogal Flight Simulatjon System, by M. J.

Zyda, and others, Jul. 1987.

Moffit, Francis H., Mikhail, Edward M.,
Photogrammetry, 3rd Edition, Harper & Row, 1980.

EEZ-SCAN 84 Scientific Staff, : S e
Exclusive Economic Zone, Western Conterminous

United States, U.S. Geological Survey
Miscellaneous Investigations Series I-1792,
1986.

Tvce, Robert C., "Deep Seafloor Mapping Systems-
A Review", MTS Journal, v. 20, #4, Dec. 1986.

Chavez, S. Pat Jr., "Processing Techniques for
Digital Sonar Images from GLORIA",

Photogrammetric Engineering and Remote Sensing,
v. 52, #8, Aug. 1986.

Hearn, Donald and Baker, M. Pauline, Computer
Graphics, Prentice-Hall, 1986.

Rodgers, David F., Procedural Elements for
Computer Graphics, McGraw-Hill Book Co., 1985.

100

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Professor Chin-Hwa Lee
Code 62 Le

No. Copies

15

Electrical and Computer Engineering Department

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 62

Electrical and Computer Engineering Department

Naval Postgraduate School
Monterey, CA 93943

Professor C. W. Therrien
Code 62 Ti

Electrical and Computer Engineering Department

Naval Postgraduate School
Monterey, CA 93943

RADM. G. H. Curtis

Naval Sea Systems Command (PMS 350)
National Center #3

2531 Sefferson Davis Highway
Arlington, VA 22202

Dr. Arthur Bisson

Assistant Technical Director, Acoustics
Strategic Submarine Division (CNO/OP-02)
Crystal Mall #3

1931 Jefferson Davis Highway

Arlington, VA 22202

Lt. Virginia Oard

Defense Mapping Agency Headquarters
U.S. Naval Observatory BLDG. 56
Washington, D.C. 20305-3000

101

[
.. J

-

10.

11.

Director, Defense Mapping Agency
Hydrographic/Topographic Center
ATTN: James C. Hammack (code REA)
6500 Brookes Lane

Washington, D.C. 20315

Commanding Officer

Naval Oceanographic Office
Bay St.

Louis, MS 39522-5001

Lt. Robert J. Myers
c/o Robert Myers
R.D. #4 Box 328
Washington, PA 15301

